山东省滕州市第一中学东校人教A版必修5数学导学案:3.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 滕州市 第一 中学 东校人教 必修 数学 导学案
- 资源描述:
-
1、3.4基本不等式 (2)班级 姓名 学号 学习目标 通过例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值. 学习过程 一、课前准备复习1:已知,求证:.复习2:若,求的最小值二、新课导学 学习探究探究1:若,求的最大值.探究2:求(x5)的最小值. 典型例题 例1某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?. 评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的
2、适用条件.归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.例2 已知,满足,求的最小值. 总结:注意“1”妙用. 动手试试练1. 已知a,b,c,d都是正数,求证:.练2. 若, ,且,求xy的最小值.总结提升规律技巧总结:利用基本不等式求最值时,各项必须为正数,若为负数,则添负号变正.知识拓展1. 基本不等式的变形:;2. 一般地,对于个正数,都有,(当且仅当时取等号)3. 当且仅当
3、时取等号) 学习评价 1. 在下列不等式的证明过程中,正确的是( ).A若,则B若,则C若,则D若,则2. 已知,则函数的最大值是( ).A2 B3 C1 D3. 若,且,则的取值范围是( ).A BC D4. 若,则的最小值为 .5. 已知,则的最小值为 . 课后作业 1. 已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,矩形长、宽各为多少时,旋转形成的圆柱的侧面积最大? 2. 某单位建造一间背面靠墙的小房,地面面积为12,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元. 如果墙高为3,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
