山东省潍坊市2019届高三高考模拟(5月三模)考试数学(文)试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省潍坊市2019届高三高考模拟5月三模考试数学文试卷 WORD版含解析 山东省 潍坊市 2019 三高 模拟 月三模 考试 数学 试卷 WORD 解析
- 资源描述:
-
1、潍坊市高考模拟考试文科数学注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】先利
2、用一元二次不等式的解法化简集合,再利用并集的定义求解即可.【详解】,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.设复数满足,则( )A. 1B. C. 3D. 5【答案】B【解析】【分析】由可得,再利用复数模的公式可得结果.【详解】,,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化
3、简,防止简单问题出错,造成不必要的失分.3.“”是“,成立”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由基本不等式可得,“,”等价于,再由充分条件与必要条件的定义可得结果.【详解】时,“,”等价于,而可推出,不能推出,所以“”是“,”成立的充分不必要条件,故选A.【点睛】本题主要考查基本不等式的应用以及充分条件与必要条件,属于中档题.判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题的等
4、价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.4.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占,三星销量约占,苹果销量约占),根据该图,以下结论中一定正确的是( )A. 四个季度中,每季度三星和苹果总销量之和均不低于华为的销量B. 苹果第二季度的销量小于第三季度的销量C. 第一季度销量最大的为三星,销量最小的为苹果D. 华为的全年销量最大【答案】D【解析】【分析】根据华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图,分析出每个季度华为、苹果、三星三种品牌的手机各季度销量的百分比,再对每个选项进行分析判断
5、即可.【详解】对于,第四季度中,华为销量大于,三星和苹果总销量之和低于华为的销量,故错误;对于,苹果第二季度的销量大于苹果第三季度的销量,故错误;对于,第一季度销量最大的是华为,故错误;对于,由图知,四个季度华为的销量都最大,所以华为的全年销量最大,正确,故选D.【点睛】本题主要考查百分比堆积图的应用,考查了数形结合思想,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.5.中,角,的对边分别为,若,.则角等于( )A. B. C. 或D. 或【答案】D【解析】试题分析:因为,所以由正弦定理可得:,因为,可得:,所以或,故选D.考点:正弦定理6.设抛物线上一点到轴的距离是4,则点到该抛物
6、线焦点的距离是( )A. 4B. 6C. 8D. 12【答案】【解析】试题分析:先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,进而求得答案解:抛物线y2=8x的准线为x=2,点P到y轴的距离是4,到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B考点:抛物线的定义此处有视频,请去附件查看】7.函数的部分图象如图所示,则( )A. B. C. D. 【答案】B【解析】试题分析:根据图像得到:,将点代入得到,考点:的部分图像确定其解析式8.下列说法错误的是( )A. 垂直于同一
7、个平面的两条直线平行B. 若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C. 一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D. 一条直线与一个平面内无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】【分析】根据线面垂直的性质定理判断;根据面面垂直的性质定理判断;根据面面平行的判定定理判断;根据特例法判断.【详解】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,正确;由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行
8、,则这两个平面平行,正确;当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,错误,故选D.【点睛】本题主要考查面面平行的判定、面面垂直的性质及线面垂直的判定与性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.9.已知,若正实数满足,则的取值范围为( )A. B. 或C. 或D. 【答案】C【解析】【分析】先判断是上的增函数,原不等式等价于,分类讨论,
9、利用对数函数的单调性求解即可.【详解】因为与都是上的增函数,所以是上的增函数,又因为所以等价于,由,知,当时,在上单调递减,故,从而;当时,在上单调递增,故,从而,综上所述, 的取值范围是或,故选C.【点睛】解决抽象不等式时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数的单调性若函数为增函数,则;若函数为减函数,则10.已知是定义在上的奇函数,且,则函数的零点个数至少为( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据函数是定义在上的奇函数可得,可判断函数的零点个数为奇数,结合求得的值为零,从而可得结果.【详解】是定义在上的奇函数,且零点关于原点对称,零点个数奇数
10、,排除选项,又,的零点至少有个,故选C.【点睛】本题主要考查函数的零点、函数奇偶性的应用以及抽象函数的解析式,意在考查综合应用所学知识解答问题的能力,属于中档题.11.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A. B. C. D. 【答案】A【解析】【分析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有
11、:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.12.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为(
12、 )A. B. C. D. 【答案】C【解析】【分析】先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、
13、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.二、填空题:本大题共4小题,每小题5分,共20分.13.若函数在点处切线方程为,则实数_.【答案】-1【解析】【分析】利用导数的几何意义求出曲线在点处的切线斜率为,从而可得结果.【详解】因为函数的导数为,所以在点处的切线斜率为,又因为在点处的切线方程为,所以,解得,故答案为.【点睛】本题主要考查利用导数求切线斜率,属于基础题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求参数或切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.14
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-498563.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
