2021版江苏高考数学一轮复习讲义:第10章 第1节 两个计数原理、排列与组合 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版江苏高考数学一轮复习讲义:第10章 第1节两个计数原理、排列与组合 WORD版含答案 2021 江苏 高考 数学 一轮 复习 讲义 10 两个 计数 原理 排列 组合 WORD 答案
- 资源描述:
-
1、全国卷五年考情图解高考命题规律把握1.考查形式高考在本章一般命制1道小题或者1道解答题,分值占517分.2.考查内容计数原理常与古典概型综合考查;对二项式定理的考查主要是利用通项公式求特定项;对正态分布的考查,可能单独考查也可能在解答题中出现;以实际问题为背景,考查分布列、期望等是高考的热点题型.3.备考策略从2019年高考试题可以看出,概率统计试题的阅读量和信息量都有所加强,考查角度趋向于应用概率统计知识对实际问题作出决策.第一节两个计数原理、排列与组合最新考纲1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念
2、及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题1两个计数原理分类加法计数原理分步乘法计数原理条件完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法结论完成这件事共有Nmn种不同的方法完成这件事共有Nmn种不同的方法2.排列、组合的定义排列的定义从n个不同元素中取出m(mn)个元素按照一定的顺序排成一列组合的定义合成一组3.排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(mn)个元素的所有不同
3、排列的个数从n个不同元素中取出m(mn)个元素的所有不同组合的个数公式An(n1)(n2)(nm1)C性质An!,0!1CC,CCC一、思考辨析(正确的打“”,错误的打“”)(1)所有元素完全相同的两个排列为相同排列()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的()(4)kCnC.()答案(1)(2)(3)(4)二、教材改编1图书馆的一个书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,不同的取法有()A12B16C64D120B书架上共有358
4、16本不同的书,从中任取一本共有16种不同的取法,故选B.2用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()A8 B24 C48 D120C末位只能从2,4中选一个,其余的三个数字任意排列,故这样的偶数共有AC432248个故选C.36把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A144 B120C72 D24D“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A43224.4五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为 五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有 种. (用数字作
5、答)4554五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性考点1两个计数原理的综合应用利用两个基本计数原理解决问题的步骤第一步,审清题意,弄清要完成的事件是怎样的第二步,分析完成这件事应采用分类、分步、先分类后分步、先分步后分类这四种方法中的哪一种第三步,弄清在每一类或每一步中的方法种数第四步,根据两个基本计数原理计算出完成这件事的方法种数 (1)如果一个三位正整数如“a1a2a3”满足a1a2,且a2a3,则称这样的三位数为凸数(如
6、120,343,275等),那么所有凸数的个数为()A240B204C729D920(2)(2016全国卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A24 B18 C12 D9(3)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A24 B48 C72 D96(1)A(2)B(3)C(1)如果这个三位数含0,则0必在末位,共有这样的凸数C个;如果这个三位数不含0,则这样的凸数共有CAC个即共有2CCA240个(2)从E到G需要分两
7、步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有336(条)所以小明到老年公寓的最短路径条数为6318.(3)法一:(以位置为主考虑)分两种情况:A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有43224种涂法A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有432248种涂法
8、故共有244872种涂色方法法二:(以颜色为主考虑)分两类(1)取4色:着色方法有2A48(种)(2)取3色:着色方法有A24(种)所以共有着色方法482472(种) (1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成(2)较复杂的问题可借助图表来完成(3)对于涂色问题:分清元素的数目以及在不相邻的区域内是否可以使用同类元素;注意对每个区域逐一进行,分步处理教师备选例题1甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A4种B
9、6种C10种D16种B分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图);同理,甲第一次踢给丙时,满足条件的也有3种传递方式由分类加法计数原理可知,共有336(种)传递方式2.如图所示的几何体是由三棱锥PABC与三棱柱ABCA1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A6种 B9种 C12种 D36种C先涂三棱锥PABC的三个侧面,有326(种)涂法;然后涂三棱柱的三个侧面,有212(种)涂法共有6212(种)不同的涂法1.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A
10、,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有()A6种 B8种 C12种 D48种D从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有C种选法,参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有C种选法,参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任选一个,有C种选法,则共有CCC48(种)线路故选D.2(2019河北六校联考)甲与其四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一
11、辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为()A64 B80 C96 D120 B5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日第一步,安排偶数日出行,每天都有2种选择,共有224(种);第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有32212(种),第二类,不安排甲的车,每天都有2种选择,共有238(种),共计12820(种)根据分步乘法计数原理,不同的用车方案种数为42080.考点2排列问题求解排列应用问题的6种常用方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法相隔问题把相邻元
12、素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反、等价转化的方法3名女生和5名男生排成一排(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)一题多解若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)一题多解其中甲不站最左边,乙不站最右边,有多少种排法?解(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-499015.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
江西省2024届新高三第一次稳派大联考化学试卷.pdf
