分享
分享赚钱 收藏 举报 版权申诉 / 11

类型2021版江苏高考数学一轮复习课后限时集训27 函数Y=ASIN(ΩX+Φ)的图象及三角函数模型的简单应用 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:499116
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:334.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021版江苏高考数学一轮复习课后限时集训27 函数YASINX的图象及三角函数模型的简单应用 WORD版含解析 2021 江苏 高考 数学 一轮 复习 课后 限时 集训 27 函数 ASIN
    资源描述:

    1、函数yAsin(x)的图象及三角函数模型的简单应用建议用时:45分钟一、选择题1函数ysin在区间,上的简图是()ABC DA令x0,得ysin,排除B、D.由f0,f0,排除C,故选A.2函数f(x)tan x(0)的图象的相邻两支截直线y2所得线段长为,则f的值是()A B. C1 D.D由题意可知该函数的周期为,2,f(x)tan 2x.ftan .3(2019潍坊模拟)函数ysin 2xcos 2x的图象向右平移个单位长度后,得到函数g(x)的图象,若函数g(x)为偶函数,则的值为()A. B. C. D.B由题意知ysin 2xcos 2x2sin,其图象向右平移个单位长度后,得到函

    2、数g(x)2sin的图象,因为g(x)为偶函数,所以2k,kZ,所以,kZ,又因为,所以.4.已知函数f(x)Asin(x)的部分图象如图所示,则的值为()A B.C D.B由题意,得,所以T,由T,得2,由图可知A1,所以f(x)sin(2x)又因为fsin0,所以.5(2019武汉调研)函数f(x)Acos(x)(0)的部分图象如图所示,给出以下结论:f(x)的最小正周期为2;f(x)图象的一条对称轴为直线x;f(x)在,kZ上是减函数;f(x)的最大值为A.则正确结论的个数为()A1 B2 C3 D4B由题图可知,函数f(x)的最小正周期T22,故正确;因为函数f(x)的图象过点和,所以

    3、函数f(x)图象的对称轴为直线xk(kZ),故直线x不是函数f(x)图象的对称轴,故不正确;由图可知,当kTxkT(kZ),即2kx2k(kZ)时,f(x)是减函数,故正确;若A0,则最大值是A,若A0,则最大值是A,故不正确综上知正确结论的个数为2.二、填空题6将函数f(x)2sin的图象向右平移个周期后,所得图象对应的函数为f(x)_.2sin函数y2sin的周期为,将函数y2sin的图象向右平移个周期即个单位长度,所得函数为y2sin2sin.7.已知函数f(x)sin(x)的部分图象如图所示,则yf取得最小值时x的集合为_根据所给图象,周期T4,故,2,因此f(x)sin(2x),另外

    4、图象经过点,代入有22k(kZ),再由|,得,f(x)sin,fsin,当2x2k(kZ),即xk(kZ)时,yf取得最小值8已知f(x)sin(0),ff,且f(x)在区间上有最小值,无最大值,则_.依题意,x时,y有最小值,sin1,2k(kZ)8k(kZ),因为f(x)在区间上有最小值,无最大值,所以,即12,令k0,得.三、解答题9设函数f(x)cos(x)的最小正周期为,且f.(1)求和的值;(2)在给定坐标系中作出函数f(x)在0,上的图象解(1)因为T,所以2,又因为fcoscossin 且0,所以.(2)由(1)知f(x)cos.列表:2x0x0f(x)1010描点,连线,可得

    5、函数f(x)在0,上的图象如图所示10.(2019北京市东城区二模)已知函数f(x)Asin(x)的部分图象如图所示(1)求函数f(x)的解析式;(2)若对于任意的x0,m,f(x)1恒成立,求m的最大值解(1)由图象可知,A2.因为(T为最小正周期),所以T.由,解得2.又函数f(x)的图象经过点,所以2sin2,解得2k(kZ)又|,所以.所以f(x)2sin.(2)法一:因为x0,m,所以2x.当2x,即x时,f(x)单调递增;所以此时f(x)f(0)1,符合题意;当2x,即x时,f(x)单调递减,所以f(x)f1,符合题意;当2x时,即x时,f(x)单调递减,所以f(x)f1,不符合题

    6、意综上,若对于任意的x0,m,f(x)1恒成立,则必有0m,所以m的最大值是.法二:画出函数f(x)2sin的图象,如图所示,由图可知,函数f(x)在上单调递增,在上单调递减,且f(0)f1,所以0m.所以m的最大值为.1将函数f(x)tan(010)的图象向右平移个单位长度后与函数f(x)的图象重合,则()A9 B6 C4 D8B函数f(x)tan的图象向右平移个单位长度后所得图象对应的函数解析式为ytantan,平移后的图象与函数f(x)的图象重合,k,kZ,解得6k,kZ.又010,6.2已知函数f(x)sin(x),x和x分别是函数f(x)取得零点和最小值点横坐标,且f(x)在单调,则

    7、的最大值是()A3B5C7D9Bf(x)sin(x),x和x分别是函数f(x)取得零点和最小值点的横坐标,即T(kZ),又T,0,2k1(kN*),又f(x)在单调,又T,8,当k3,7时,f(x)sin(7x),由x是函数f(x)最小值点横坐标知,此时, f(x)在x递减,x递增,不满足f(x)在单调,故舍去;当k2,5时,f(x)sin(5x),由x是函数f(x)最小值点横坐标知,此时f(x)在单调递增,故5.故选B.3(2019长春模拟)已知函数f(x)sin xcos x(0),xR.若函数f(x)在区间(,)内单调递增,且函数yf(x)的图象关于直线x对称,则的值为_f(x)sin

    8、xcos xsin,因为f(x)在区间(,)内单调递增,且函数图象关于直线x对称,所以f()必为一个周期上的最大值,所以有2k,kZ,所以22k,kZ.又(),则2,即2,所以.4已知函数f(x)2sin(0)(1)若点是函数f(x)图象的一个对称中心,且(0,1),求函数f(x)在上的值域;(2)若函数f(x)在上单调递增,求实数的取值范围解(1)由点是函数f(x)图象的一个对称中心,得k,kZ,kZ.(0,1),f(x)2sin2sin.(2)令2k2x2k,kZ,解得x,kZ.函数f(x)在上单调递增,即又,0,即k0,k00.0,即实数的取值范围为.已知函数f(x)sin xcos xcos2xb1.(1)若函数f(x)的图象关于直线x对称,且0,3,求函数f(x)的单调递增区间;(2)在(1)的条件下,当x时,函数f(x)有且只有一个零点,求实数b的取值范围解(1)函数f(x)sin xcos xcos2xb1,sin 2xb1sinb.因为函数f(x)的图象关于直线x对称,所以2k,kZ,且0,3,所以1.由2k2x2k(kZ),解得kxk(kZ),所以函数f(x)的单调递增区间为k,k(kZ)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021版江苏高考数学一轮复习课后限时集训27 函数Y=ASIN(ΩX+Φ)的图象及三角函数模型的简单应用 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-499116.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1