2021版高中数学 课时分层作业二十五 几类不同增长的函数模型(含解析)新人教A版必修1.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版高中数学 课时分层作业二十五 几类不同增长的函数模型含解析新人教A版必修1 2021 高中数学 课时 分层 作业 十五 不同 增长 函数 模型 解析 新人 必修
- 资源描述:
-
1、课时分层作业二十五几类不同增长的函数模型(25分钟50分)一、选择题(每小题5分,共30分)1.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是()【解析】选D.设该林区的森林原有蓄积量为a,由题意,ax=a(1+0.104)y,故y=log1.104x(x1),所以y=f(x)的图象大致为D中图象.2.如图给出了某种豆类生长枝数y(枝)与时间t(月)的图象,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是()A.y=2t2B.y=log2tC.y=t3 D.y=2t【解析】选B.因为由图象知模型越来越平滑,所以只有
2、B符合条件.3. 某驾驶员喝了m升酒后,血液中的酒精含量f(x)(毫克/毫升)随时间x(小时)变化的规律近似满足表达式f(x)=酒后驾车与醉酒驾车的标准及相应的处罚规定:驾驶员血液中酒精含量不得超过0.02毫克/毫升.此驾驶员至少要过_小时后才能开车(精确到1小时).()A.1B.2C.3D.4【解析】选D.当x=1小时时,f(x)=51-2=0.20.02,当x1时,由0.02,得,设函数g(x)=,则g(x)是减函数,g(3)=,g(4)=,所以至少需要4小时后才能开车.4.在某种新型材料的研制中,实验人员获得了下面一组实验数据(见下表).现准备用下列四个函数中的一个近似地表示这些数据的规
3、律,其中最接近的一个是()x1.99345.16.12y1.54.047.51218.01A.y=2x-2B.y= (x2-1)C.y=log2xD.y=【解析】选B.由题意得,表中数据y随x的变化趋势,函数在(0,+)上是增函数,且y的变化随x的增大越来越快;因为A中函数是线性增加的函数,C中函数是比线性增加还缓慢的函数,D中函数是减函数;所以排除A,C,D选项;所以B中函数y= (x2-1)符合题意.5.下面对函数f(x)=lox、g(x)=与h(x)=在区间(0,+)上的衰减情况说法正确的是()A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢B.f(x)衰
4、减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快【解析】选C.函数f(x)=lox、g(x)=与h(x)=在区间(0,+)上的大致图象如图所示:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢,在区间(1,+)上,递减较慢,且越来越慢;同样,函数g(x)的图象在区间(0,+)上,递减较慢,且递减速度越来越慢;函数h(x)的图象在区间(0,1)上递减较快,但递减速度变慢,在区间(1,+)上,递减较慢,且越
5、来越慢.6. 一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt (cm3),经过8 min后发现容器内还有一半的沙子,若再经过t0 min,容器中的沙子只有开始时的.则t0的值为()A.8B.16C.24D.32【解析】选B.由已知得ae-8b=,所以e-8b=,所以e-b=,又因为再经过t0 min,容器中的沙子只有开始时的,所以a=,所以=,=,所以=3,所以t0=16.二、填空题(每小题5分,共10分)7.现有某种细胞100个,每小时分裂一次,即由1个细胞分裂成2个细胞,且每次只有占总数的细胞分裂,按这种规律发展下去,细胞总
6、数超过1010个时用的时间为_小时.(参考数据:lg 30.477,lg 20.301)【解析】现有细胞100个,先考虑经过1,2,3,4个小时后的细胞总数:1小时后,细胞总数为100+1002=100(个);2小时后,细胞总数为100+1002=100(个);3小时后,细胞总数为100+1002=100(个);4小时后,细胞总数为100+1002=100(个).可归纳出,细胞总数y(个)与时间x(小时)之间的函数关系为y=100,xN*.由1001010,得108,两边同时取以10为底的对数,得xlg 8,所以x.因为45.45,所以x45.45.故经过46小时,细胞总数超过1010个.答案
7、:468.甲用1 000元买入一种股票,后将其转卖给乙,获利10%,而后乙又将这些股票卖给甲,乙损失了10%,最后甲按乙卖给甲的价格的九折将股票出售给丙,甲在上述交易中盈利_元.【解析】由题意,甲卖给乙获利:1 00010%=100(元),乙卖给甲:1 000(1+10%)(1-10%)=990(元),甲卖给丙:1 000(1+10%)(1-10%)90%=1 0001.10.90.9=891(元),甲赔了:990-891=99(元),甲的盈亏情况为盈利:100-99=1(元).答案:1三、解答题9.(10分)有甲乙两种商品,经销这两种商品所能获得的利润分别是p万元和q万元,它们与投入资金m(
8、万元)的关系式为p=m,q=.今有3万元资金投入这两种商品.若设甲商品投资x万元,投资两种商品所获得的总利润为y万元.(1)写出y关于x的函数表达式.(2)如何分配资金可使获得的总利润最大?并求最大利润的值.【解析】(1)由题意知,对甲种商品投资x万元,获总利润为y万元,则对乙种商品的投资为(3-x)万元,所以y=x+(0x3).(2)令t=(0t),则x=3-t2,所以y=(3-t2)+t=-+,所以当t=时,ymax=1.05(万元).由t=可求得x=0.75(万元),3-x=2.25(万元),所以为了获得最大利润,对甲乙两种商品的资金投入应分别为0.75万元和2.25万元,此时获得最大利
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-499870.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2023年 安徽中考《定心大题》:历史.pdf
