2021版高考数学一轮复习 核心素养测评七十一 随机事件的概率 理 北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版高考数学一轮复习 核心素养测评七十一 随机事件的概率 北师大版 2021 高考 数学 一轮 复习 核心 素养 测评 七十一 随机 事件 概率 北师大
- 资源描述:
-
1、核心素养测评七十一 随机事件的概率(25分钟50分)一、选择题(每小题5分,共35分)1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”【解析】选D.A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.【变式备选】把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与
2、“乙分得红牌”是()A.对立事件B.对立但不互斥事件C.互斥但不对立事件D.以上均不对【解析】选C.事件“甲分得红牌”与“乙分得红牌”是不可能同时发生的两个事件,这两个事件可能恰有一个发生、一个不发生,可能两个都不发生,所以这两个事件互斥但不对立,应选C.2.已知随机事件A,B发生的概率满足条件P(AB)=,某人猜测事件发生,则此人猜测正确的概率为()A.1B.C.D.0【解析】选C.因为事件与事件AB是对立事件,所以事件发生的概率为P()=1-P(AB)=1-=,则此人猜测正确的概率为.3.下列结论正确的是()A.事件A的概率P(A)必满足0P(A)1B.事件A的概率P(A)=0.999,则
3、事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有一名胃溃疡病人服用此药,则估计有明显的疗效的可能性为76%D.某奖券中奖率为50%,则某人购买此奖券10张,一定有5张中奖【解析】选C.由概率的基本性质可知,事件A的概率P(A)满足0P(A)1,故A错误;必然事件的概率为1,故B错误;某奖券中奖率为50%,则某人购买此奖券10张,不一定有5张中奖,故D错误.4.已知随机事件A发生的概率是0.02,若事件A出现了10次,那么进行的试验次数约为()A.300B.400C.500D.600【解析】选C.设共进行了n次试验,则=0.02,解得n=500.
4、5.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为()A.B.C.D.【解析】选C.设白球为A,蓝球为B,红球为C,则不同的排列情况为ABCC,ACBC,ACCB,BACC,BCAC,BCCA,CABC,CACB,CBCA,CBAC,CCAB,CCBA共12种情况,其中红球都在中间的有ACCB,BCCA两种情况,所以红球都在中间的概率为=,所以中间两个小球不都是红球的概率为1-=.【变式备选】某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(
5、甲级)的概率为()A.0.95B.0.97C.0.92D.0.08【解析】选C.记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.6.从1,2,3,4,5这5个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.B.C.D.【解析】选C.任取两数的所有可能为两个奇数;一个奇数一个偶数;两个偶数,若是对立事件,则首先应该是互斥事件,分别判断每种情况
6、:两个事件不是互斥事件;“至少有一个是奇数”包含“两个都是奇数”的情况,所以不互斥;“至少有一个是奇数”包含“两个奇数”和“一奇一偶”,所以与“两个偶数”恰好对立;“至少有一个是奇数”和“至少有一个是偶数”均包含“一奇一偶”的情况,所以不互斥.综上所述,只有正确.7.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任意抽取一人,估计该生的身高在
7、155.5170.5 cm的概率约为()A.B.C.D.【解析】选A.从已知数据可以看出,在随机抽取的这20名学生中,身高在155.5170.5 cm的学生有8人,频率为,故可估计在该校高二年级的所有学生中任意抽取一人,其身高在155.5170.5 cm的概率约为.二、填空题(每小题5分,共15分)8.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为_.【解析】由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-502498.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
