河北省保定市定兴县北河中学2016届高三上学期期中数学试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省保定市定兴县北河中学2016届高三上学期期中数学试卷 WORD版含解析 河北省 保定市 定兴县 河中 2016 届高三上 学期 期中 数学试卷 WORD 解析
- 资源描述:
-
1、2015-2016学年河北省保定市定兴县北河中学高三(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1已知集合A=x|x=3n+2,nN,B=6,8,10,12,14,则集合AB中元素的个数为()A5B4C3D22“x=1”是“x22x+1=0”的()A充要条件B充分而不必要条件C必要而不充分条件D既不充分也不必要条件3圆心为(1,1)且过原点的圆的方程是()A(x1)2+(y1)2=1BB(x+1)2+(y+1)2=1C(x+1)2+(y+1)2=2D(x1)2+(y1)2=24直线3x+4y=b与圆x2+y22x2y+1=0相切,则b=()A2或12B2或12C2或12D
2、2或125已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A3B6C9D126设双曲线=1(a0,b0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1BA2C,则该双曲线的渐近线的斜率为()ABC1D7过双曲线x2=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()AB2C6D48已知抛物线y2=2px(p0)的准线经过点(1,1),则该抛物线焦点坐标为()A(1,0)B(1,0)C(0,1)D(0,1)9已知椭圆+=1(m0 )的左焦
3、点为F1(4,0),则m=()A2B3C4D910已知双曲线=1(a0,b0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x2)2+y2=3相切,则双曲线的方程为()A=1B=1Cy2=1Dx2=111若双曲线=1的一条渐近线经过点(3,4),则此双曲线的离心率为()ABCD12下列双曲线中,渐近线方程为y=2x的是()ABy2=1 Cx2=1Dy2=1二.填空题:13若直线3x4y+5=0与圆x2+y2=r2(r0)相交于A,B两点,且AOB=120,(O为坐标原点),则r=14若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为15已知(2,0)是双曲线x2=1(b0)
4、的一个焦点,则b=16椭圆+=1(ab0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是三.解答题:17如图,椭圆E: =1(ab0)经过点A(0,1),且离心率为求椭圆E的方程18如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2()圆C的标准方程为?()圆C在点B处的切线在x轴上的截距?19已知过原点的动直线l与圆C1:x2+y26x+5=0相交于不同的两点A,B(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程20已知点F为抛物线E:y2=2px(p0)的焦点,点A(2,m)在抛物线E上,且|AF|=
5、3,()求抛物线E的方程;()已知点G(1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切21已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由22如图,已知抛物线C1:y=,圆C2:x2+(y1)2=1,过点P(t,0)(t0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点(1)求点A,B的坐标;(2)求PAB的面积2015-2016学年
6、河北省保定市定兴县北河中学高三(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1已知集合A=x|x=3n+2,nN,B=6,8,10,12,14,则集合AB中元素的个数为()A5B4C3D2【考点】交集及其运算【专题】集合【分析】根据集合的基本运算进行求解【解答】解:A=x|x=3n+2,nN=2,5,8,11,14,17,则AB=8,14,故集合AB中元素的个数为2个,故选:D【点评】本题主要考查集合的基本运算,比较基础2“x=1”是“x22x+1=0”的()A充要条件B充分而不必要条件C必要而不充分条件D既不充分也不必要条件【考点】充要条件【专题】简易逻
7、辑【分析】先求出方程x22x+1=0的解,再和x=1比较,从而得到答案【解答】解:由x22x+1=0,解得:x=1,故“x=1”是“x22x+1=0”的充要条件,故选:A【点评】本题考察了充分必要条件,考察一元二次方程问题,是一道基础题3圆心为(1,1)且过原点的圆的方程是()A(x1)2+(y1)2=1BB(x+1)2+(y+1)2=1C(x+1)2+(y+1)2=2D(x1)2+(y1)2=2【考点】圆的标准方程【专题】计算题;直线与圆【分析】利用两点间距离公式求出半径,由此能求出圆的方程【解答】解:由题意知圆半径r=,圆的方程为(x1)2+(y1)2=2故选:D【点评】本题考查圆的方程的
8、求法,解题时要认真审题,注意圆的方程的求法,是基础题4直线3x+4y=b与圆x2+y22x2y+1=0相切,则b=()A2或12B2或12C2或12D2或12【考点】圆的切线方程【专题】计算题;直线与圆【分析】由直线与圆相切得到圆心到直线的距离d=r,利用点到直线的距离公式列出方程,求出方程的解即可得到b的值【解答】解:x2+y22x2y+1=0可化为(x1)2+(y1)2=1直线3x+4y=b与圆x2+y22x2y+1=0相切,圆心(1,1)到直线的距离d=1,解得:b=2或12故选:D【点评】此题考查了直线与圆的位置关系,当直线与圆相切时,圆心到直线的距离等于圆的半径5已知椭圆E的中心在坐
9、标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A3B6C9D12【考点】圆锥曲线的综合;直线与圆锥曲线的关系【专题】圆锥曲线的定义、性质与方程【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果【解答】解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=2,由,解得y=3,所以a(2,3),B(2,3)|AB|=6故选:B【点评】本题考查
10、抛物线以及椭圆的简单性质的应用,考查计算能力6设双曲线=1(a0,b0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1BA2C,则该双曲线的渐近线的斜率为()ABC1D【考点】双曲线的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】求得A1(a,0),A2(a,0),B(c,),C(c,),利用A1BA2C,可得,求出a=b,即可得出双曲线的渐近线的斜率【解答】解:由题意,A1(a,0),A2(a,0),B(c,),C(c,),A1BA2C,a=b,双曲线的渐近线的斜率为1故选:C【点评】本题考查双曲线的性质,考查斜率的计算,考查学生分析
11、解决问题的能力,比较基础7过双曲线x2=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()AB2C6D4【考点】双曲线的简单性质【专题】圆锥曲线的定义、性质与方程【分析】求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|【解答】解:双曲线x2=1的右焦点(2,0),渐近线方程为y=,过双曲线x2=1的右焦点且与x轴垂直的直线,x=2,可得yA=2,yB=2,|AB|=4故选:D【点评】本题考查双曲线的简单性质的应用,考查基本知识的应用8已知抛物线y2=2px(p0)的准线经过点(1,1),则该抛物线焦点坐标为()A(1,0)B(1,0)C(0
12、,1)D(0,1)【考点】抛物线的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】利用抛物线y2=2px(p0)的准线经过点(1,1),求得=1,即可求出抛物线焦点坐标【解答】解:抛物线y2=2px(p0)的准线经过点(1,1),=1,该抛物线焦点坐标为(1,0)故选:B【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础9已知椭圆+=1(m0 )的左焦点为F1(4,0),则m=()A2B3C4D9【考点】椭圆的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】利用椭圆+=1(m0 )的左焦点为F1(4,0),可得25m2=16,即可求出m【解答】解:椭圆+=1(m0
13、)的左焦点为F1(4,0),25m2=16,m0,m=3,故选:B【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础10已知双曲线=1(a0,b0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x2)2+y2=3相切,则双曲线的方程为()A=1B=1Cy2=1Dx2=1【考点】双曲线的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程【解答】解:双曲线的渐近线方程为bxay=0,双曲线的渐近线与圆(x2)2+y2=3相切,b=a,焦点为F(
14、2,0),a2+b2=4,a=1,b=,双曲线的方程为x2=1故选:D【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键11若双曲线=1的一条渐近线经过点(3,4),则此双曲线的离心率为()ABCD【考点】双曲线的简单性质【专题】圆锥曲线的定义、性质与方程【分析】利用双曲线的渐近线方程经过的点,得到a、b关系式,然后求出双曲线的离心率即可【解答】解:双曲线=1的一条渐近线经过点(3,4),可得3b=4a,即9(c2a2)=16a2,解得=故选:D【点评】本题考查双曲线的简单性质的应用,基本知识的考查12下列双曲线中,渐近线方程为y=2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-504530.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
