分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2022届高三统考数学(文科)人教版一轮复习学案:2-9 函数模型及其应用 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:505595
  • 上传时间:2025-12-09
  • 格式:DOCX
  • 页数:6
  • 大小:127.82KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届高三统考数学文科人教版一轮复习学案:2-9 函数模型及其应用 WORD版含解析 2022 三统 数学 文科 人教版 一轮 复习 函数 模型 及其 应用 WORD 解析
    资源描述:

    1、第九节函数模型及其应用【知识重温】一、必记2个知识点1三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性_增长速度_相对平稳图象的变化随x增大逐渐表现为与_平行随x增大逐渐表现为与_平行随n值变化而不同2.函数yax(a1),ylogax(a1)和yxn(n0)的增长速度比较(1)指数函数yax和幂函数yxn(n0)在区间(0,)上,无论n比a大多少,尽管在x的一定范围内ax会小于xn,但由于yax的增长速度_yxn的增长速度,因此总存在一个x0,当xx0时有_.(2)对于对数函数ylogax(a1)和幂函数yxn(n0)在区间(0,),尽管在x的一

    2、定范围内可能会有logaxxn,但由于ylogax的增长速度慢于yxn的增长速度,因此在(0,)上总存在一个实数x0,使xx0时,_.(3)yax(a1),ylogax(a1)与yxn(n0)尽管都是增函数,但由于它们_不同,而且不在同一个“档次上”,因此在(0,)上随x的增大,总会存在一个x0,当xx0时,有_.二、必明2个易误点1易忽视实际问题对自变量的影响,单纯考虑解析式下的函数定义域2在解决函数模型后,要注意回归实际,验证这个数学结果对实际问题的合理性【小题热身】一、判断正误1判断下列说法是否正确(请在括号中打“”或“”)(1)函数y2x的函数值比yx2的函数值大()(2)“指数爆炸”

    3、是指数型函数yabxc(a0,b0,b1)增长速度越来越快的形象比喻()(3)幂函数增长比直线增长更快()二、教材改编2在2 h内将某种药物注射进患者的血液中在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减能反映血液中药物含量Q随时间t变化的图象是()3生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)x22x20(万元)一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为_万件三、易错易混4下列函数中,增长速度越来越慢的是()Ay6x Bylog6x Cyx6 Dy6x5有一组实验数据如表所示:x123

    4、45y1.55.913.424.137则下列所给函数模型不适合的有()Aylogax(a1) Byaxb(a1)Cyax2b(a0) Dylogaxb(a1)四、走进高考62020全国卷Logistic模型是常用数学模型之一,可应用于流行病学领域有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t),其中K为最大确诊病例数当I(t*)0.95K时,标志着已初步遏制疫情,则t*约为(ln 193)()A60 B63 C66 D69一次函数或二次函数模型自主练透型2021山西孝义检测为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租,该

    5、景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分)(1)求函数yf(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?悟技法一次函数、二次函数模型问题的常见类型及解题策略(1)直接考查一次函数、二次函数模型解决此类问题应注意三点:二次

    6、函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;解决函数应用问题时,最后要还原到实际问题(2)以分段函数的形式考查解决此类问题应注意以下三点:实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;分段函数的最值是各段的最大(或最小)者的最大者(最小者)提醒(1)构建函数模型时不要忘记考虑函数的定义域(2)对构造的较复杂的函数模型,要适时地用换元法转化为熟悉的函数

    7、问题求解.考点二函数yx模型的应用互动讲练型例1“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是C(x)(x0,k为常数)记y为该企业安装这种净水设备的费用与该企业4年共将

    8、消耗的水费之和(1)试解释C(0)的实际意义,并建立y关于x的函数关系式并化简;(2)当x为多少平方米时,y取得最小值,最小值是多少万元?悟技法应用函数yx模型的关键点(1)明确对勾函数是正比例函数f(x)ax与反比例函数f(x)叠加而成的(2)解决实际问题时一般可以直接建立f(x)ax的模型,有时可以将所列函数关系式转化为f(x)ax的形式(3)利用模型f(x)ax求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件.变式练(着眼于举一反三)1为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元

    9、该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)(0x10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值考点三指数、对数函数模型互动讲练型例22020山东卷基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间在新冠肺炎疫情初始阶段,可以用指数模型:I(t)ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T

    10、近似满足R01rT.有学者基于已有数据估计出R03.28,T6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)()A1.2天 B1.8天C2.5天 D3.5天悟技法应用指数函数模型应注意的问题(1)指数函数模型的应用类型常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决(2)应用指数函数模型时的关键关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型(3)ya(1x)n通常利用指数运算与对数函数的性质求解.变式练(着眼于举一反三)22017北京卷根据有关资料,围棋状态空

    11、间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg 30.48)()A1033B1053C1073 D1093第九节函数模型及其应用【知识重温】增函数增函数增函数越来越快越来越慢y轴x轴快于axxnlogaxxn增长速度axxnlogax【小题热身】1答案:(1)(2)(3)2解析:由题意,当02时,图象为指数型曲线,所以C错,B对,故选B.答案:B3解析:利润L(x)20xC(x)(x18)2142,当x18时,L(x)有最大值答案:184解析:D中一次函数的增长速度不变,A、C中函数的增长速度越来越快,只有B中对数函数的增

    12、长速度越来越慢,符合题意答案:B5解析:由所给数据可知,y随x的增大而增大,且增长速度越来越快,而A,D中的函数增长速度越来越慢,B中的函数增长速度保持不变故选C.答案:C6解析:I(t*)0.95K,整理可得19,两边取自然对数得0.23(t*53)ln 193,解得t*66,故选C.答案:C课堂考点突破考点一解析:(1)当x6时,y50x115,令50x1150,解得x2.3,x为整数,3x6.当x6时,y503(x6)x1153x268x115.令3x268x1150,有3x268x1150,结合x为整数得6x20.故y定义域为x|3x20,xN*(2)对于y50x115(3x6,xZ)

    13、,显然当x6时,ymax185,对于y3x268x11532(6185,当每辆自行车的日租金定为11元时,才能使一日的净收入最多考点二例1解析:(1)C(0)表示不安装设备时每年缴纳的水费,C(0)4,k1 000,y0.2x40.2x(x0)(2)y0.2(x5)1217,当且仅当x520,即x15时,ymin7,当x为15平方米时,y取得最小值7万元变式练1解析:(1)由已知条件得C(0)8,则k40,因此f(x)6x20C(x)6x(0x10)(2)f(x)6x101021070(万元),当且仅当6x10,即x5时等号成立所以当隔热层厚度为5 cm时,总费用f(x)达到最小值,最小值为70万元考点三例2解析:R01rT,3.2816r,r0.38.若则2,0.38(t2t1)ln 20.69,t2t11.8,选B.答案:B变式练2解析:由题意,lglglg 3361lg 1080361lg 380lg 103610.4880193.28.又lg 103333,lg 105353,lg 107373,lg 109393,故与最接近的是1093.故选D.答案:D

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届高三统考数学(文科)人教版一轮复习学案:2-9 函数模型及其应用 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-505595.html
    相关资源 更多
  • 【官方原版】2024九省联考数学试卷.pdf【官方原版】2024九省联考数学试卷.pdf
  • 【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf
  • 【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf
  • 【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1