分享
分享赚钱 收藏 举报 版权申诉 / 10

类型河北省南宫市奋飞中学必修三数学教案:3.2 古典概型.doc

  • 上传人:a****
  • 文档编号:506160
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:10
  • 大小:217.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    河北省南宫市奋飞中学必修三数学教案:3.2 古典概型 河北省 南宫市 奋飞 中学 必修 数学教案 3.2 古典
    资源描述:

    1、教学设计方案课题名称古典概型年级学科高二数学教材版本人教版一、教学内容分析1、来源为人教版高中数学必修3第三章;基本事件的概念及特点古典概型的特征古典概型的计算公式2、通过生活中的实例与数学模型理解基本事件的概念和古典概型的两个特征,通过具体的实例来推导古典概型下的概率公式;3、来源:学,科,网4、古典概型是一种特殊的数学模型,也是一种最基本的概率模型,也是后面学习其它概率的基础。在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,能解释生活中的一些问题,也有利于计算一些事件的概率,起到承前启后的作用,所以在概率论中占有相当重要的地位。二、教学目标(1)理解基本事

    2、件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。重点:理解古典概型的概念及利用古典概型求解随机事件的概率。难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。三、学习者特征分析学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式,这三者形成了学生思维的“最近发展区”. 学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养.多数学生对数学学习有一定的兴趣,能够积极参与研究,但在合作交流意识方面,发展不

    3、够均衡,有待加强.让学生自己预习,做课后及资料练习题,发现问题,带着问题来上课学习。四、教学过程试验1:掷一枚质地均匀的硬币,观察出现哪几种结果?试验2:抛掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?1基本事件的概念一次试验可能出现的每一个结果 称为一个基本事件。如:试验1中的“正面朝上”、 “正面朝下”;试验2中的出现“1点”、 “2点”、 “3点”、 “4点”、 “5点”、 “6点”随着问题的提出,激发了学生的求知欲望,提高学生的学习积极性,提高学习数学的兴趣。2问题1:(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗?(2)事件“出现偶数点”包含了哪几个基本事件?由

    4、如上问题,分别得到基本事件如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。问题的引导可以使学生更好的把握问题的关键。让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了解基本事件,我们可以用列举法把所有可能的结果都列出来。画树状图是列举法的基本方法,一般分布完成的结果(两步或两步以上)可以用树状图进行列举。解:所求的基本事件共有6个:,将数形结合和分类讨论的思想

    5、渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。问题2:以下每个基本事件出现的概率是多少?试验1:P(“正面朝上”)P(“反面朝上”)试验2:P(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”)问题3:观察对比,找出试验1和试验2的共同特点:经观察,概括总结后得到:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典

    6、概型。培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出,能让学生很好的理解古典概型。从而突出了古典概型这一重点。问题4:向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?问题5:某同学随机地向一靶心进行射击,这一试验的结果只有有限个:“命中10环”、“命中9认环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。你为这是古典概型吗?为什么?问题6:你能举出几个生活中的古典概型的例子吗?两个问题的设计是为了让学生更加准确的

    7、把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。通过教师的介绍,学生能够体会到生活中处处有古典概型,感受到数学的实际应用。.问题7:在古典概型下,如何求随机事件出现的概率?试验2:掷一颗均匀的骰子,事件A为“出现偶数点”,请问事件A的概率是多少?探讨:基本事件的总数为6,事件A包含3个基本事件:“2点”,“4点”,“6点”。则P(A)P(“2点”)P(“4点”)P(“6点”) 即P(“出现偶数点”)由上可以概括总结出,古典概型计算任何事件的概率计算公式为:提醒:在使用古典概型的概率公式时,应该注意:要判断所用概率模型是不是古典概型(前提)。鼓励学生运用观察类比和从具体

    8、到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。例2.同时抛掷两枚均匀的硬币,会出现几种结果?出现“一枚正面向上,一枚反面向上”的概率是多少?学生甲解:基本事件:“两个正面”、“一正一反”、“两个反面”,得学生乙解:基本事件:(正,正),(正,反),(反,正),(反,反),得来源:1ZXXK9.例3. 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是9的结果有多少种?(3)向上的点数之和是9的概率是

    9、多少?解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种。(2)在上面的结果中,向上的点数之和为9的结果有4种,分别为:(3,6),(4,5),(5,4),(6,3)(3)由于所有36种结果是等可能的,其中向上点数之和为9的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得思考与探究:为什么要把两个骰子标上记号?如果不标记号会

    10、出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别。这时,所有可能的结果将是:观察下面两对骰子:上面左右两组骰子所呈现的情况,可以让我们很容易的感受到,这是两个不同的基本事件,因此,在投掷两个骰子的过程中,我们必须对两个骰子加以区分,因此要把两个骰子标上记号。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型(重点判断是否满足等可能性),再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。加深对古典概型的理解(尤其是等可能性),巩固学生对已学知识的掌握。利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做

    11、到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。通过观察,发现犯错的根本原因是研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。建立有效的模型,能缩短解决问题的时间,锻炼数学思维。练习:1.单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?解:这是一个古典

    12、概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:探究:如果该题是不定项选择题,假如考生也不会做,则他能够答对的概率为多少?此时比单选题容易了,还是更难了?思考:基本事件总共有几个?“答对”包含几个基本事件?2.从1,2,3,4,5,6,7,8,9这九个自然数中任选一个,所选中的数是3的倍数的概率是 3.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张Q;B:抽到一张“梅花”;C:抽到一张红桃K。11.思考题. 同时抛

    13、掷三枚均匀的硬币,会出现几种结果?出现“一枚正面向上,两枚反面向上”的概率是多少随堂练习,及时巩固新知。来源:学*科*网Z*X*X*K来源:1拓展延伸,让学生带着问题走出课堂,继续研究。作业:课本130页练习第1,2题, 课本134页习题3.2A组第4题课本134页习题B组第1题学生通过作业,及时反馈,巩固所学知识;教师通过分层次布置作业,提高了学生的学习效率,同时能在作业中发现教学的不足。五、教学策略选择与信息技术融合的设计教师活动预设学生活动设计意图教师创设情境,为导入新知做准备。学生感悟体验,思考回答。引出基本事件的概念,结合试验中结果理解基本事件的概念。激发了学生的求知欲望,提高学生的

    14、学习积极性,提高学习数学的兴趣。教师再讲解用树状图列举问题的优点。学生尝试着列出所有的基本事件将数形结合和分类讨论的思想渗透到具体问题中来。教师归纳古典概型的特点学生互相交流,回答补充古典概型的特点的应用突破如何判断一个试验是否是古典概型这一教学难点。教师提出问题,引导学生分析试验2中“出现偶数点”这一事件的概率,学生探讨交流,得出问题答案深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。六、教学评价设计本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典

    15、概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。 在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。对于古典概型的判断,两个条件的缺一不可,尤其是例题中等可能性的判断,教师通过实例模型的给出,帮助学生突破思维难点整个教学设计的顺利实施,达到了教师的教学目标。七、教学板书多媒体投影1.基本事件:互斥任何事件都可表示成基本事件的和2.古典概型有限性;等可能性。3.古典概型概率计算公式八、教学反思1、 本节课的过程是提出问题(发现问题)、研究问题、解决问题的过程进行;2、 本节课在进行是否为古典概型问题是学生探讨激烈,教师身临其境也不由自主参与其中,课堂异常活跃 ;3、 这节课所要达到的预期目标以完全达到,令本人很满意;4、 课堂上没有出现预料之外的事情发生,基本都本人设计中有条不紊的进行;5、 如果再让我重新上这节课,我觉得应该再让课堂教学进行的快点,多加几道练习题,巩固知识;6、 从作业情况看学生对本节课的知识及方法基本掌握,多加训练就能达到熟练掌握的程度,这与课堂布置和知识个安排以及和同学们的积极参与有直接关系;7、 听课教师的评价是可以适当再让学生多参与些,本人的认识为如果情况允许可以尽力让学生多参与到课堂上来。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:河北省南宫市奋飞中学必修三数学教案:3.2 古典概型.doc
    链接地址:https://www.ketangku.com/wenku/file-506160.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1