河北省博野中学2019_2020学年高二数学11月月考试题201912180343.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 博野 中学 2019 _2020 学年 数学 11 月月 考试题 201912180343
- 资源描述:
-
1、河北省博野中学2019-2020学年高二数学11月月考试题一、选择题(本大题共12小题,共60.0分)1. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件2. 已知定点,是圆:上任意一点,点关于点的对称点为,线段的中垂线与直线相交于点,则点的轨迹是A. 直线B. 圆C. 椭圆D. 双曲线3. 已知,是椭圆的两个焦点,P为椭圆上一点,且,则此椭圆离心率的取值范围是 A. B. C. D. 4. 四棱锥中,底面ABCD为直角梯形,且,平面ABCD且,则PB与平面PCD所成角的正弦值为()A. B. C. D. 5. 如图,已知直线与抛物线相交
2、于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是A. B. C. D. 6. 方程表示的曲线是 A. 一条直线B. 两条直线C. 一个圆D. 两个半圆7. 设F为抛物线的焦点,过F且倾斜角为的直线交C于两点,O为坐标原点,则的面积为 A. B. C. D. 8. 下图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,的三边所围成的区域记为I,黑色部分记为II,其余部分记为在整个图形中随机取一点,此点取自I,II,III的概率分别记为,则() A. B. C. D. 9. 设分别是双曲线的左、右焦点,
3、若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为A. B. C. D. 10. 给出下列四个命题:若样本数据的方差为,则数据的方差为;“平面向量的夹角为锐角,则”的逆命题为真命题;命题“,均有”的否定是“,均有”;是直线与直线平行的必要不充分条件其中正确的命题个数是A. B. C. D. 11. 已知抛物线C:的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则()A. B. 3C. D. 212. 已知F为抛物线C:的焦点,过F作两条互相垂直的直线,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为 A. 16B. 14C. 12D. 1
4、0二、填空题(本大题共4小题,共20.0分)13. “”是“直线和直线平行”的_ 条件填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”14. 已知椭圆C:,点M与C的焦点不重合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是_16. 如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且,则该椭圆的离心率是_三、解答题(本大题共6小题,共70.0分)17. 某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量方法,具体如下;第一阶梯,每户居民每月用水量不超过12吨,价
5、格为4元吨;第二阶梯,每户居民用水量超过12吨,超过部分的价格为8元吨,为了了解全是居民月用水量的分布情况,通过抽样获得了100户居民的月用水量单位:吨,将数据按照全市居民月用水量均不超过16吨分成8组,制成了如图1所示的频率分布直方图求频率分布直方图中字母的值,并求该组的频率;通过频率分布直方图,估计该市居民每月的用水量的中位数的值保留两位小数;如图2是该市居民张某2016年月份的月用水费元与月份的散点图,其拟合的线性回归方程是,若张某2016年月份水费总支出为312元,试估计张某7月份的用水吨数18.椭圆的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为当l与x轴垂直时,求直线AM
6、的方程;设O为坐标原点,证明:19.已知椭圆:,点,若直线与椭圆交于,两点,且为线段的中点,求直线的斜率;若直线:与椭圆交于,两点,求的面积的最大值20.在四棱锥中,底面ABCD是边长为2的菱形,面ABCD,E、F分别为BC、PA的中点求证:平面PDE;求二面角的正弦值;求点C到平面PDE的距离21.如图,已知直三棱柱中,E是棱上的动点,F是AB的中点,当E是棱的中点时,求证:平面;在棱上是否存在点E,使得二面角的大小是?若存在,求出CE的长,若不存在,请说明理由22.设抛物线的焦点为F,过点的动直线交抛物线于不同两点,线段PQ中点为M,射线MF与抛物线交于点A求点M的轨迹方程;求面积的最小值
7、高二数学期中考试答案【答案】1. A2. D3. C4. B5. C6. D7. D8. A9. D10. B11. B12. A13. 充分不必要14. 1215. 216. 17. 解:,第四组的频率为:且张某7月份的用水费为设张某7月份的用水吨数吨,则张某7月份的用水吨数15吨18. 解:,与x轴垂直,由,解得或,或,直线AM的方程为或,证明:当l与x轴重合时,当l与x轴垂直时,OM为AB的垂直平分线,当l与x轴不重合也不垂直时,设l的方程为,则,直线MA,MB的斜率之和为,之和为,由,得,将代入可得,从而,故MA,MB的倾斜角互补,综上19. 解:设,故,将两式相减,可得,即,因为A为
8、线段MN的中点,所以,得,即,故直线MN的斜率联立可得,由,设,由根与系数的关系可得,又因为点B到直线的距离,当且仅当,即时取等号故的面积的最大值为20. 解:如图所示,取PD中的G,连结GF、GE,、F分别为BC、PA的中点,所以四边形BFGE是平行四边形,平面PDE作与E,作于I,连结DI,可得面PAB,又因为,面DIH,即为二面角的平面角,在直角中,二面角的正弦值为设点C到平面PDE的距离为h,解得,点C到平面PDE的距离为21. 解:取中点M,连接EM、FM-分中,M、F分别是AB、的中点,且,又矩形中,且,且,可得四边形MFCE是平行四边形-分平面,平面,平面-分以CA、CB、为x、
9、y、z轴,建立如图空间直角坐标系,可得0,2,设,得0,0,2,设平面的法向量为y,则有,解之并取,得平面的法向量为0,-分当二面角的大小是时,有,解之得因此,在棱上存在点E,当时,二面角的大小是-分22. 解:设直线PQ方程为,代入,得:,设,则,所以设,由,消去t得中点M的轨迹方程为设,又,于是,由A点在抛物线上,得,又,点A到直线PQ的距离,又面积,设,有,故在上是减函数,在上是增函数,当时取到最小值面积的最小值是【解析】1. 【分析】本题考查必要条件、充分条件与充要条件的判断、不等式的解法,属于基础题利用必要条件、充分条件与充要条件的判断,关键要分清条件与结论,即可得结果【解答】由得,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-506181.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
