河北省唐山市区县2020届高三上学期第一次段考数学(理)试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省唐山市区县2020届高三上学期第一次段考数学理试题 WORD版含解析 河北省 唐山市 区县 2020 届高三 上学 第一次 段考 数学 试题 WORD 解析
- 资源描述:
-
1、高三年级10月7-8日月考 数学试卷(理科)一、选择题(每小题5分,共12小题,共60分)1.已知集合,则()A. B. C. D. 【答案】C【解析】【分析】先分别求出集合A,B,由此利用交集定义能求出AB【详解】集合,1,0,-1,-2, ,故选:C【点睛】本题考查交集的求法,是基础题,注意条件,属于易错题2.命题“”的否定是( )A. B. C. D. 【答案】D【解析】【分析】利用全称命题的否定的规则写出其否定即可.【详解】命题的否定为:,故选D.【点睛】全称命题的一般形式是:,其否定为.存在性命题的一般形式是,其否定为.3.设,则( )A. B. C. D. 【答案】B【解析】【分析
2、】由指数函数的性质得,由对数函数的性质得,根据正切函数的性质得,即可求解,得到答案【详解】由指数函数的性质,可得,由对数函数的性质可得,根据正切函数的性质,可得,所以,故选B.【点睛】本题主要考查了指数式、对数式以及正切函数值的比较大小问题,其中解答中熟记指数函数与对数函数的性质,以及正切函数的性质得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题4.若cos()=,则sin2=()A. B. C. D. 【答案】A【解析】【分析】由三角函数的诱导公式,化简得,即可求解.【详解】因为,又由,故选A.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中利用三角函数的诱
3、导公式和余弦函数的倍角公式,准确化简运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.设是两条直线, , 表示两个平面,如果, ,那么“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由充分充分不必要条件的判定发放进行判断即可.【详解】如果, ,那么由则可得到 即可得到;反之由, ,不能得到,故,如果, ,那么“”是“”的充分不必要条件.故选A.【点睛】本题考查分充分不必要条件的判定,属基础题.6.函数图象的大致形状是A. B. C. D. 【答案】B【解析】【分析】先判断函数的奇偶性,再求,利用排除法可得解
4、.【详解】由题意得,所以,所以函数为奇函数,图象关于原点对称,排除选项A,C;令,则,。故选B【点睛】本题主要考查了函数的奇偶性及函数的图象,属于基础题.7.已知,则( )A. B. C. D. 【答案】A【解析】【分析】由题意利用两角差的正余弦公式展开求得tan的值,再利用二倍角公式求得的值【详解】由题 ,则 故 故选:A【点睛】本题主要两角差的正余弦公式,二倍角公式的应用,同角三角函数的基本关系,属于基础题8.设函数在上可导,导函数为图像如图所示,则()A. 有极大值,极小值B. 有极大值,极小值C. 有极大值,极小值D. 有极大值,极小值【答案】C【解析】【分析】根据函数的图象,求得的符
5、号,得到函数的单调性,再根据函数极值的概念,即可求解,得到答案【详解】由题意,可得当时,则,函数单调递减;当时,则,函数单调递减增;当时,则,函数单调递减增;当时,则,函数单调递减增,所以有极大值,极小值,故选C【点睛】本题主要考查了利用导数研究函数的单调性与极值问题,其中解答中熟记函数的导数与原函数的单调性与极值之间的关系是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题9.已知三棱锥的四个顶点都在球的球面上,若平面,则球的表面积为( )A. B. C. D. 【答案】C【解析】【分析】设底面外接圆的半径为,且圆心为,则可根据条件得到,利用正弦定理可求,从而求出后可求球的表面积
6、.【详解】如图,设底面外接圆半径为,且圆心为,则平面,因为平面,所以,所以四点共面.取的中点为,连接,则,因为平面,平面,所以,所以,故四边形为平行四边形,故,在中,即,所以,所以球的表面积为,选C.【点睛】本题考查三棱锥外接球半径的求法,注意利用球心的性质确定球心的位置.另外,在计算线段的长度时,注意利用解三角形的相关知识来帮助求解.10.若函数在区间内单调递增,则实数的取值范围为()A. B. C. D. 【答案】C【解析】【分析】先利用复合函数同增异减法得出函数的单调递增区间为,于此得出,然后列不等式组可解出实数的取值范围.【详解】由,即,解得.二次函数的对称轴为.由复合函数单调性可得函
7、数的单调递增区间为要使函数在区间内单调递增,则,即,解得,故选:C.【点睛】本题考查对数型复合函数的单调性与参数,解本题的关键在于将区间转化为函数单调区间的子集,利用集合的包含关系求解,考查分析问题和解决问题的能力,属于中等题.11.定义在上的偶函数满足,当时,设函数,则函数与的图像所有交点的横坐标之和为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据f(x)的周期和对称性得出函数图象,根据图象和对称轴得出交点个数【详解】f(x+1)f(x),f(x+2)f(x+1)f(x),f(x)的周期为2f(1x)f(x1)f(x+1),故f(x)的图象关于直线x1对称又g(x)()|
8、x1|(1x3)的图象关于直线x1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(1,3)上共有4个交点,故选:B【点睛】本题考查了函数图象变换,考查了函数对称性、周期性的判断及应用,考查了函数与方程的思想及数形结合思想,属于中档题12.已知函数(为自然对数的底数),.若存在实数,使得,且,则实数的最大值为( )A. B. C. D. 1【答案】C【解析】【分析】解方程求得,结合求得的取值范围.将转化为直线和在区间上有交点的问题来求得的最大值.【详解】由得,注意到在上为增函数且,所以.由于的定义域为,所以由得.所以由得,画出和的图像如下图所示,其中由图可知的最大值即为.故选C.【
9、点睛】本小题主要考查函数零点问题,考查指数方程和对数方程的解法,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.二、填空题(每小题5分,共4小题,共20分)13.函数的定义域为_【答案】【解析】【分析】利用偶次方根被开方数为非负数、对数真数大于零和分式分母不为零列不等式组,解不等式组求得函数的定义域.【详解】依题意得,得,即函数的定义为.【点睛】本小题主要考查函数定义域的求法,函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.属于基础题.14.若,则实数的值为_.【答案
10、】1【解析】【分析】根据题意找出的原函数,然后根据定积分运算法则,两边进行计算,求出实数的值【详解】由于;所以,即;故答案为:1【点睛】本题考查定积分的计算,解题的关键是找到被积函数的原函数,属于基础题,15.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在上是“关联函数”,则实数的取值范围是_.【答案】.【解析】【分析】令,可得出,将问题转化为直线与函数在区间上的图象有两个交点,求实数的取值范围,然后利用导数分析函数的单调性与极值以及端点函数值,可得出实数的取值范围.【详解】令,得,得.问题等价于直线与曲线在区间上的图象有两
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-508001.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022六年级数学下册 第7单元 总复习 2图形与几何第3课时 圆的周长和面积授课课件 苏教版.ppt
