山东省青岛市黄岛区2020-2021学年高二上学期期中考试数学试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省青岛市黄岛区2020-2021学年高二上学期期中考试数学试卷 WORD版含解析 山东省 青岛市 黄岛区 2020 2021 学年 上学 期中考试 数学试卷 WORD 解析
- 资源描述:
-
1、20202021学年度第一学期期中学业水平检测高二数学试题一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线的倾斜角为( )A. B. C. D. 【答案】A【解析】【分析】由直线与轴垂直可得倾斜角【详解】直线与轴垂直,倾斜角为故选:A2. 已知向量,且,则实数( )A. B. C. D. 【答案】C【解析】【分析】由计算可得【详解】,解得故选:C3. 若直线与直线平行,则实数( )A. B. C. D. 【答案】B【解析】【分析】根据两直线平行可得到各项系数所满足的关系式,进而求得结果.【详解】由两直线平行知:,解得:.故选:B
2、.【点睛】结论点睛:若直线与平行,则,或.4. 已知三棱柱,点为线段的中点,则( )A. B. C. D. 【答案】D【解析】【分析】根据空间向量线性运算求解即可【详解】解:在三棱柱,点为线段的中点,则,所以,故选:D5. 已知二面角的大小为,为棱上不同两点,分别在半平面内,均垂直于棱,则异面直线与所成角的余弦值为( )A. B. C. D. 【答案】B【解析】【分析】在平面内作,且,得,(或其补角)是异面直线与所成角在中求解即可得【详解】如图,在平面内作,且,连接,则是平行四边形,所以,(或其补角)是异面直线与所成角因为,所以,又,所以是二面角的平面角,即,所以,又,所以平面,平面,所以,由
3、得,所以故选:B【点睛】方法点睛:本题考查求异面直线所成的角,解题关键是作出异面直线所成的角作平行线构造三角形,得出异面直线所成的角(并证明)然后计算6. 若过原点的直线与圆有两个交点,则的倾斜角的取值范围为( )A. B. C. D. 【答案】C【解析】【分析】先由圆的方程确定圆心和半径,得到直线的斜率存在,设直线的方程为,根据直线与圆的位置关系列出不等式求解,得出斜率的范围,进而可得倾斜角的范围.【详解】由得,所以圆的圆心为,半径为,因此为使过原点的直线与圆有两个交点,直线的斜率必然存在,不妨设直线的方程为:,即则有,即,整理得,解得,记的倾斜角为,则,又,所以.故选:C.7. 已知椭圆上
4、两点,若的中点为,直线的斜率等于,则直线的斜率等于( )A. B. C. D. 【答案】D【解析】【分析】设,把两点坐标代入椭圆方程相减后可得与的关系,从而得出结论【详解】设,则,两式相减得,整理得,即故选:D【点睛】方法点睛:在遇到椭圆的弦中点时,常常用点差法求解即设弦两端点为,弦中点,两端点坐标代入椭圆方程相减珀可得与的关系双曲线的弦中点也可这样求解8. 已知圆与直线交于两点,且,则圆与函数的图象交点个数为( )个A. B. C. D. 【答案】A【解析】【分析】由弦长求得半径,确定圆过点,而函数是增函数,也过点,从而可得结论【详解】圆心到直线的距离为,又,所以,所以圆过点,而函数在上增函
5、数,且过点,因此它们有2个交点故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 已知直线,则下述正确的是( )A. 直线的斜率可以等于B. 直线的斜率有可能不存在C. 直线可能过点D. 若直线的横纵截距相等,则【答案】BD【解析】分析】根据直线方程判断斜率AB,代入点的坐标可判断直线是否过一点判断C,求出横纵截距可判断D【详解】时,斜率不存在,时,斜率不等于0,A错;B正确;,不在直线上,C错;时,纵截距不存在,时,令得,令,由得,D正确故选:BD10. 已知椭圆:,关于椭圆下述正
6、确的是( )A. 椭圆的长轴长为B. 椭圆的两个焦点分别为和C. 椭圆的离心率等于D. 若过椭圆的焦点且与长轴垂直的直线与椭圆交于,则【答案】ACD【解析】【分析】椭圆方程化为标准方程,求出,然后判断各选项【详解】由已知椭圆标准方程为,则,长轴长为,A正确;两焦点为,B错误;离心率为,C正确;代入椭圆方程得,解得,D正确故选:ACD11. 已知点,动点到直线的距离为,则( )A. 点的轨迹是椭圆B. 点的轨迹曲线的离心率等于C. 点的轨迹方程为D. 的周长为定值【答案】AC【解析】【分析】设,根据整理可得轨迹方程,利用轨迹方程依次判断各个选项即可得到结果.【详解】设,则,整理可得:,即点轨迹方
7、程为,C正确;由方程知点轨迹为椭圆,A正确;由方程得:,离心率,B错误;由椭圆定义知:周长为,D错误.故选:AC.12. 已知四面体的所有棱长均为,则下列结论正确的是( )A. 异面直线与所成角为B. 点到平面的距离为C. 四面体的外接球体积为D. 动点在平面上,且与所成角为,则点的轨迹是椭圆【答案】BC【解析】【分析】在正四面体中通过线面垂直可证得,通过计算可验证BC,通过轨迹法可求得的轨迹为双曲线方程即可得D错误.【详解】取中点,连接,可得面,则,故A错误;在四面体中,过点作面于点,则为为底面正三角形的重心,因为所有棱长均为,即点到平面的距离为,故B正确;设为正四面体的中心则为内切球的半径
8、,我外接球的半径,因为,所以,即,所以四面体的外接球体积,故C正确;建系如图:,设,则因为,所以,即,平方化简可得:,可知点的轨迹为双曲线,故D错误.故选:BC 【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.三、填空题:本题共4个小题,每小题5分,共20分.13. 圆与圆的位置关系为_.【答案】相交【解析】【分析】根据两圆的方程,分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解.【详解】由圆和圆,可得两圆的圆心分别为,半径分别为,所以,所以两圆相交.故答案为:相交.14. 已
9、知椭圆的离心率等于,则实数_.【答案】或【解析】分析】讨论椭圆焦点的位置,分两种情况求椭圆的离心率,再求实数的值.【详解】当椭圆的焦点在轴时,所以,解得:,当椭圆的焦点在轴时,所以,解得:.故答案为:或15. 已知正方体的棱长为,点为线段上一点,则点到平面的距离为_.【答案】【解析】【分析】作交于,可得平面,由平行线的性质求得即可【详解】作交于,因为平面,所以平面,由得,所以故答案为:16. 在平面直角坐标系中,点分别在轴、轴上,则(1)的最小值是_;(2)的最小值是_.【答案】 (1). (2). 【解析】【分析】(1)求得关于轴的对称点后,由可求得结果;(2)求得关于轴对称点和关于轴的对称
10、点后,由可求得结果.【详解】(1)点关于轴的对称点的坐标为,则(当且仅当三点共线时取等号),;(2)点关于轴的对称点的坐标为;点关于轴的对称点的坐标为,则(当且仅当四点共线时取等号),.故答案为:;.【点睛】思路点睛:本题考查两定点到动点的距离之和的最值问题的求解,求解此类问题的基本思路是求得某点关于动点所在直线的对称点后,利用三角形两边之和大于第三边的特点,确定三点共线时取最值.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知为坐标原点,直线(),圆.(1)若的倾斜角为,求;(2)若与直线的倾斜角互补,求直线上的点到圆上的点的最小距离;(3)求点到的最
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-510050.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
