专题02 导数-2017年高考数学(文)试题分项版解析 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题02 导数-2017年高考数学文试题分项版解析 WORD版含解析 专题 02 导数 2017 年高 数学 试题 分项版 解析 WORD
- 资源描述:
-
1、1.【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间2.【2017课标1,文14】曲线在点(1,2)处的切线方程为_【答案】【解析】【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜
2、率,其求法为:设是曲线上的一点,则以的切点的切线方程为:若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为3.【2017天津,文10】已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .【答案】 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数在点处的导数的几何意义是曲线在点处的切线的斜率相应地,切线方程为注意:求曲线切线时,要分清在点处的切线与过点的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.4.【2017课标1,文21】已知函数=ex(exa)a2x(1)讨论的单调性;(2)若,求a的取值范围
3、【答案】(1)当,在单调递增;当,在单调递减,在单调递增;当,在单调递减,在单调递增;(2)【解析】试题分析:(1)分,分别讨论函数的单调性;(2)分,分别解,从而确定a的取值范围试题解析:(1)函数的定义域为,若,则,在单调递增若,则由得当时,;当时,所以在单调递减,在单调递增若,则由得当时,;当时,故在单调递减,在单调递增【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数
4、极值或最值5.【2017课标II,文21】设函数.(1)讨论的单调性;(2)当时,求的取值范围.【答案】()在 和单调递减,在单调递增() 【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对分类讨论,当a1时,满足条件;当时,取,当0a1时,取,.试题解析:(1) 令得 当时,;当时,;当时,所以在 和单调递减,在单调递增当时,取 综上,a的取值范围1,+) 【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数
5、的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.6.【2017课标3,文21】已知函数=lnx+ax2+(2a+1)x(1)讨论的单调性;(2)当a0时,证明【答案】(1)当时,在单调递增;当时,则在单调递增,在单调递减;(2)详见解析【解析】试题分析:(1)先求函数导数,再根据导函数符号变化情况讨论单调性:当时,则在单调递增,当时,则在单调递增,在单调递减.(2)证明,即证,而,所以目标函数为,即 (),利用导数易得,即得证.【考点】利用导数求单调性,利用导数证不等式【名师点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
