专题16 选修部分-三年高考(2014-2016)数学(理)试题分项版解析(解析版) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题16 选修部分-三年高考2014-2016数学理试题分项版解析解析版 WORD版含解析 专题 16 选修 部分 三年 高考 2014 2016 数学 试题 分项版 解析 WORD
- 资源描述:
-
1、三年高考(2014-2016)数学(理)试题分项版解析第十六章 选修部分 一、选择题1. 【2014,安徽理4】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是(为参数),圆的极坐标方程是,则直线被圆截得的弦长为 ( )A B C D【答案】D考点:1极坐标方程、参数方程与平面直角方程之间的转化;2圆中弦长的求解【名师点睛】对于极坐标与参数方程的问题,考生要把握好如何将极坐标方程转化成普通方程,抓住核心:,普通方程转化成极坐标方程,抓住核心:.另外,求圆中弦长问题,只需要找出直角三角形(三边为半径、圆心到弦的距离、半弦)的勾股定理
2、关系即可.2. 【2014高考北京理第3题】曲线,(为参数)的对称中心( )A在直线上 B在直线上 C在直线上 D在直线上【答案】B【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,故选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题.名师点睛:本题考查参数方程,本题属于基础题,参数方程主要考查互化问题,本题是参数方程化为普通方程,利用平方关系消去参数化为普通方程,把参数方程化为普通方程需要注意的是变量的取值范围;另一种是把普通方程化为参数方程.3. 【2014湖北卷10】已知函数是定义在上的奇函数,当时,若,则实数的取值范围为
3、( )A. B. C. D. 【答案】B考点:函数的奇函数的性质、分段函数、最值及恒成立,难度中等.【名师点睛】将含绝对值的函数、函数的奇偶性、分段函数和不等式等内容联系在一起,凸显了知识之间的联系性、综合性,体现了函数思想、转化与化归的数学思想在函数问题中的应用,能较好的考查学生的作图能力和综合能力.其解题的关键是正确地画出分段函数的图像并通过函数图像建立不等关系.二、填空题1.【2015高考安徽,理12】在极坐标中,圆上的点到直线距离的最大值是 .【答案】【考点定位】1.极坐标方程与普通方程的转化;2.圆上的点到直线的距离.【名师点睛】对于极坐标与参数方程的问题,考生要把握好如何将极坐标方
4、程转化成普通方程,抓住核心:,普通方程转化成极坐标方程,抓住核心:.圆上的点到直线的距离最大值或最小值,要考虑到圆的半径加上(或减去)圆心到直线的距离.2. 【2014高考广东卷.理.14】 (坐标系与参数方程选做题)在极坐标系中,曲线和的方程分别为和,以极点为平面直角坐标系的原点,极轴为轴正半轴,建立平面直角坐标系,则曲线和交点的直角坐标为_.【答案】.【解析】曲线的极坐标方程为,化为普通方程得,曲线的普通方程为,联立曲线和的方程得,解得,因此曲线和交点的直角坐标为.【考点定位】本题考查极坐标与参数方程的相互转化以及曲线的交点坐标求解,属于中等题.【名师点晴】本题主要考查的是极坐标方程化为直
5、角坐标方程和两曲线的交点,属于中等题解决此类问题的关键是极坐标方程转化为平面直角坐标系方程,并把几何问题代数化3. 【2014高考广东卷.理.15】 (几何证明选讲选做题)如图3,在平行四边形中,点在上且,与交于点,则 .【答案】【解析】由于四边形为平行四边形,则,因此,由于,所以,因此,故.【考点定位】本题考查相似三角形性质的应用,属于中等题.【名师点晴】本题主要考查的是相似三角形的性质定理,属于中等题解题时一定要抓住重要字眼“面积”,否则很容易出现错误解本题需要掌握的知识点是相似三角形的性质定理,即相似三角形面积的比、外接圆的面积比都等于相似比的平方4. 【2016年高考北京理数】在极坐标
6、系中,直线与圆交于A,B两点,则_.【答案】2【解析】试题分析:分别将直线方程和圆方程化为直角坐标方程:直线为过圆圆心,因此,故填:.考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式即可将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x以及,同时要掌握必要的技巧.5.【2015高考广东,理14】(坐标系与参数方程选做题)已知直线的极坐标方程为,点的极坐标为 ,则点到直线的距离为 .【答案】【解析】依题直线:和点可化为:和,所以点与直线的距离为,故应填入【考点定位】极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的
7、距离,转化与化归思想【名师点睛】本题主要考查正弦两角差公式,极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的距离,转化与化归思想的应用和运算求解能力,属于容易题,解答此题在于准确把极坐标问题转化为平面直角坐标问题,利用平面几何点到直线的公式求解6. 【2016高考天津理数】如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为_.【答案】考点:相交弦定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形比
8、例式等积式”在证明中有时还要借助中间比来代换,解题时应灵活把握2应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等7. 【2015高考广东,理15】(几何证明选讲选作题)如图1,已知是圆的直径,是圆的切线,切点为,过圆心做的平行线,分别交和于点和点,则 .【答案】【解析】如下图所示,连接,因为,又,所以,又为线段的中点,所以,在中,由直角三角形的射影定理可得即,故应填入ABCDEOP【考点定位】直线与圆的位置关系,直角三角形的射影定理【名师点睛】本题主要考查直线与圆的位置关系,直角三角形的射影定理运用,属于中档题,解答平面几何问题关
9、键在于认真审题分析图形中的线段关系,适当作出辅助线段,此题连接,则容易得到,并利用直角三角形的射影定理求得线段的值8. 【 2014湖南11】在平面直角坐标系中,倾斜角为的直线与曲线,(为参数)交于、两点,且,以坐标原点为极点,轴正半轴为极轴建立极坐标系,则直线的极坐标方程是_.【答案】【考点定位】极坐标 参数方程【名师点睛】本题主要考查了只需的极坐标方程,解决问题的关键是根据所给直线与圆几何关系求解得到直线方程,根据极坐标定义写出对应的极坐标方程即可,难度不大,属于基础题目.9. 【 2014湖南12】如图3,已知,是的两条弦,则的半径等于_.【答案】 【解析】设线段交于点D延长交圆与另外一
10、点,因为且为圆半径,所以,由三角形的勾股定理可得,由双割线定理可得,则直径,故填.【考点定位】勾股定理 双割线定理【名师点睛】本题主要考查了平面几何选讲部分的勾股定理、双割线定理,解决问题的关键是根据所给几何关系运用勾股定理、双割线定理进行推理计算即可得到所求圆的半径.10. 【 2014湖南13】若关于的不等式的解集为,则_.【答案】【解析】因为等式的解集为,所以为方程的根,即,故填.【考点定位】绝对值不等式 绝对值方程【名师点睛】本题主要考查了绝对值不等式,解决问题的关键是根据不等式的解集结合不等式对应的绝对值方程联立方程求解即可得到a值,属于绝对值不等式部分的常考题目,属于基础题目.11
11、. 【2014高考陕西版理第15题】(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则=_.【答案】3【解析】试题分析:由四边形为圆内接四边形,又因为,所以,故答案为3.考点:几何证明;三角形相似.【名师点晴】本题主要考查的是几何证明,属于容易题.此类问题一般都综合了有关圆的相关定理,同时又考察相似三角形有关定理,但难度一般都不大,解题注意整合已知条件,严密推理. 凡是题目中涉及长度的,通常会使用到相似三角形、全等三角形、正弦定理、余弦定理等基础知识12. 【2014高考陕西版理第15题】(坐标系与参数方程选做题)在极坐标系中,点到直线的距离是_.【答案】1考点:极坐标方程;点到直线
12、距离.【名师点晴】本题主要考查的是极坐标系与参数方程,属于容易题.此类问题一般主要是极坐标与直角坐标的互化,参数方程与普通方程的互化,解题时主要是熟记有关互化公式,有的题目会考察到其中参数实际的几何意义13. 【2014高考重庆理第14题】过圆外一点作圆的切线(为切点),再作割线分别交圆于、, 若,AC=8,BC=9,则AB=_.【答案】4【解析】试题分析:由切割线定理得:,设,则所以,即,解得:(舍去),或又由是圆的切线,所以,所以、,所以所以答案应填:4.考点:1、切割线定理;2、三角形相似.【名师点睛】本题考查三角形外接圆直径的证明,相交弦定理,切割线定理,解题时要认真审题,注意圆的性质
13、的灵活运用14. 【2014高考重庆理第15题】已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,则直线与曲线的公共点的极径_.【答案】考点:参数方程与极坐标.【名师点睛】本题考查参数方程,及坐标方程的运用,两点间的距离公式,属于基础题,正确将参数方程化为普通方程,将极坐标方程化为直角坐标方程是解决问题的关键15. 【2015高考重庆,理14】如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_.【答案】2【解析】首先由切割线定理得,因此,又,因此,再相交弦
14、定理有,所以.【考点定位】相交弦定理,切割线定理.【名师点晴】平面几何问题主要涉及三角形全等,三角形相似,四点共圆,圆中的有关比例线段(相关定理)等知识,本题中有圆的切线,圆的割线,圆的相交弦,由圆的切割线定理和相交弦定理就可以得到题中有关线段的关系16. 【2015高考重庆,理15】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为_.【答案】【解析】直线的普通方程为,由得,直角坐标方程为,把代入双曲线方程解得,因此交点.为,其极坐标为.【考点定位】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化
15、.【名师点晴】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,本题这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题17. 【2015高考重庆,理16】若函数的最小值为5,则实数a=_.【答案】或【考点定位】绝对值的性质,分段函数.【名师点晴】与绝对值有关的问题,我们可以根据绝对值的定义去掉绝对值符号,把问题转化为不含绝对值的式子(函数、不等式等),本题中可利用绝对值定义把函数化为分段函数,再利用函数的单调性求得函数的最小值,令此最小值为5,求得
16、的值18.【2013高考北京理第9题】在极坐标系中,点到直线sin 2的距离等于_【答案】1【解析】试题分析:在极坐标系中,点对应直角坐标系中坐标为(,1),直线sin 2对应直角坐标系中的方程为y2,所以点到直线的距离为1.考点:极坐标方程与直角坐标方程的互化.【名师点睛】本题考查极坐标基础知识,要求学生使用互化公式熟练进行点的坐标转化及曲线方程的转化,然后利用点到直线距离公式求出距离,本题属于基础题,先把点的极坐标化为直角坐标,再把直线的极坐标方程化为直角坐标方程,最后求点到直线的距离.19. 【2015高考北京,理11】在极坐标系中,点到直线的距离为【答案】1【解析】先把点极坐标化为直角
17、坐标,再把直线的极坐标方程化为直角坐标方程,利用点到直线距离公式.考点定位:本题考点为极坐标方程与直角坐标方程的互化及求点到直线距离,要求学生熟练使用极坐标与直角坐标互化公式进行点的坐标转化及曲线方程的转化,熟练使用三个距离公式,包括两点间的距离、点到直线的距离、两条平行线的距离.【名师点睛】本题考查极坐标基础知识,要求学生使用互化公式熟练进行点的坐标转化及曲线方程的转化,然后利用点到直线距离公式求出距离,本题属于基础题,先把点的极坐标化为直角坐标,再把直线的极坐标方程化为直角坐标方程,最后求点到直线的距离.20. 【2014年普通高等学校招生全国统一考试湖北卷15】(选修4-1:几何证明选讲
18、)如图,为的两条切线,切点分别为,过的中点作割线交于两点,若则 .【答案】4【解析】试题分析:由切割线定理得,所以,所以.考点:圆的切线长定理,切割线定理,容易题.几何证明选讲一般考查圆的性质等简单的知识,主要以填空题的形式出现,难度一般较小.【名师点睛】本题考查圆的切线长定理、切割线定理,夯实基础,注重基础知识的运用,其难度虽不大,但充分体现了数学学科知识间的内在联系,能较好的考查学生对基本知识的识记能力和灵活运用能力.其解题的关键是合理地运用切割线定理.21. 【2014年普通高等学校招生全国统一考试湖北卷16】(选修4-4:坐标系与参数方程)已知曲线的参数方程是,以坐标原点为极点,轴的正
19、半轴为极轴建立极坐标系,曲线的极坐标方程是,则与交点的直角坐标为 .【答案】【解析】试题分析:由消去得,由得,解方程组得与的交点坐标为.考点:参数方程、极坐标方程与平面直角坐标方程的转化,曲线的交点,容易题.极坐标方程、参数方程与直角坐标方程互化,主要以填空题的形式出现,难度一般较小.【名师点睛】以圆的极坐标方程和直线的参数方程为载体,重点考查了极坐标与直角坐标的转化、直线与圆的位置关系等内容,渗透着化归与转化的数学思想,能较好的考查学生基础知识的识记能力、综合运用能力.22. 【2015高考湖北,理15】(选修4-1:几何证明选讲)如图,是圆的切线,为切点,是圆的割线,且,则 . 【答案】【
20、解析】因为是圆的切线,为切点,是圆的割线,由切割线定理知,因为,所以,即,由,所以.【考点定位】圆的切线、割线,切割线定理,三角形相似.【名师点睛】判定两个三角形相似要注意结合图形的性质特点灵活选择判定定理在一个题目中,相似三角形的判定定理和性质定理可能多次用到23. 【2015高考湖北,理16】在直角坐标系中,以O为极点,轴的正半轴为极轴建立极坐标系. 已知直线的极坐标方程为,曲线的参数方程为 ( 为参数) ,与C相交于两点,则 .【答案】【考点定位】极坐标方程、参数方程与普通方程的转化,两点间的距离.【名师点睛】化参数方程为普通方程时,未注意到普通方程与参数方程的等价性而出错.24. 【2
21、014上海,理7】已知曲线C的极坐标方程为,则C与极轴的交点到极点的距离是 .【答案】【解析】令,则,所以所求距离为.【考点】极坐标.【名师点睛】设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为.有序数对(,)叫做点M的极坐标,记为M(,)25. 【2014高考陕西版理第15题】(不等式选做题)设,且,则的最小值为_.【答案】【解析】试题分析:由柯西不等式得:,所以,得,所以,故答案为.考点:柯西不等式.【名师点晴】本题主要考查的是柯西不等式,属于容易题,解题时关键是充分利用已知条件,结合柯西不等式可得,则问题可解三、解
22、答题1.【2014江苏,理21A】选修4-1:几何证明选讲如图,是圆的直径,是圆上位于异侧的两点,证明ABDCO【答案】见解析【解析】由题意,又,.【考点定位】圆周角定理.【名师点晴】(1)圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半(2)圆心角定理圆心角的度数等于它所对弧的度数推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径2. 【2014江苏,理21B】选修4-2:矩阵与变换已知矩阵,向量,是实数,若,求的值.【答案】【解析】由题意得,解得.【考点定位】矩阵的运算.【名师点晴】求特征
23、值和特征向量的方法(1)矩阵的特征值满足,属于的特征向量满足.(2)求特征向量和特征值的步骤:解得特征值;解,取x1或y1,写出相应的向量7. 【2014江苏,理21C】选修4-4:坐标系与参数方程在平面直角坐标系中,已知直线的参数方程(为参数),直线与抛物线相交于两点,求线段的长【答案】【解析】直线的普通方程为,即,与抛物线方程联立方程组解得,.【考点定位】直线的参数方程.【名师点晴】1.运用互化公式:将极坐标化为直角坐标;2.直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行3. 【2014江苏,理21D】选修4-5:不等式选讲已知,
24、证明【答案】见解析【解析】,,.【考点定位】算术平均值几何平均不等式【名师点晴】两个常用基本不等式(1)柯西不等式:设a1,a2,an,b1,b2,bn为实数,则(aaa)(bbb)(a1b1a2b2anbn)2,当且仅当bi0或存在一个数k,使aikbi(i1,2,n)时,等号成立(2)平均值不等式:如果a1,a2,an为n个正数,则,当且仅当a1a2an时,等号成立4. 【2014江苏,理23】已知函数,设为的导数,(1)求的值;(2)证明:对任意,等式都成立.【答案】(1);(2)证明见解析【解析】(1)由已知,所以,故.(2)由(1)得,两边求导可得,类似可得,下面我们用数学归纳法证明
25、对一切都成立,【考点定位】复合函数的导数,数学归纳法.【名师点晴】用数学归纳法证明一个与正整数有关的命题时,其步骤为:归纳奠基:证明当取第一个自然数时命题成立;归纳递推:假设,(,)时,命题成立,证明当时,命题成立;由得出结论5. 【2015江苏高考,21】A(选修41:几何证明选讲) 如图,在中,的外接圆圆O的弦交于点D求证:ABCEDO(第21A题)【答案】详见解析【解析】试题分析:利用等弦对等角,同弧对等角,得到,又公共角,所以两三角形相似试题解析:因为,所以又因为,所以,又为公共角,可知【考点定位】相似三角形【名师点晴】1.判定两个三角形相似的常规思路(1)先找两对对应角相等;(2)若
26、只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性” 2.借助图形判断三角形相似的方法(1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例;(3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边B(选修42:矩阵与变换)已知,向量是矩阵的属性特征值的一个特征向量,矩阵以及它的另一个特征值.【答案】,另一个特征值为【解析】试题分析:由矩阵特征值与特征向量可列出关于x,y的方程组,再根据特征多项式求出矩阵另一个特征值试
27、题解析:由已知,得,即,则,即,所以矩阵从而矩阵的特征多项式,所以矩阵的另一个特征值为【考点定位】矩阵运算,特征值与特征向量【名师点晴】求特征值和特征向量的方法(1)矩阵的特征值满足,属于的特征向量满足.(2)求特征向量和特征值的步骤:解得特征值;解,取x1或y1,写出相应的向量C(选修44:坐标系与参数方程)已知圆C的极坐标方程为,求圆C的半径.【答案】【解析】试题分析:先根据将圆C的极坐标方程化成直角坐标方程,再根据圆的标准方程得到其半径.试题解析:以极坐标系的极点为平面直角坐标系的原点,以极轴为轴的正半轴,建立直角坐标系圆的极坐标方程为,化简,得则圆的直角坐标方程为,即,所以圆的半径为【
28、考点定位】圆的极坐标方程,极坐标与之间坐标互化【名师点晴】1.运用互化公式:将极坐标化为直角坐标;2.直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行D(选修45:不等式选讲)解不等式【答案】【考点定位】含绝对值不等式的解法【名师点晴】利用绝对值不等式的几何意义求解,体现了数形结合的思想;利用“零点分段法”求解,体现了分类讨论的思想;通过构造函数,利用函数的图象求解,体现了函数与方程的思想6. 【2015高考陕西,理22】(本小题满分10分)选修4-1:几何证明选讲如图,切于点,直线交于,两点,垂足为(I)证明:;(II)若,求的直径【
29、答案】(I)证明见解析;(II)【解析】故,即圆的直径为.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理.【名师点晴】本题主要考查的是直径所对的圆周角、弦切角定理和切割线定理,属于容易题解题时一定要注意灵活运用圆的性质,否则很容易出现错误凡是题目中涉及长度的,通常会使用到相似三角形、全等三角形、正弦定理、余弦定理等基础知识7. 【2015高考陕西,理23】选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数)以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为(I)写出的直角坐标方程;(II)为直线上一动点,当到圆心的距离最小时,求的直角坐标【答案】(I);(I
30、I)【解析】试题分析:(I)先将两边同乘以可得,再利用,可得的直角坐标方程;(II)先设的坐标,则,再利用二次函数的性质可得的最小值,进而可得的直角坐标试题解析:(I)由,得,从而有,所以.(II)设,又,则,故当时,取最小值,此时点的直角坐标为.考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.【名师点晴】本题主要考查的是极坐标方程化为直角坐标方程、参数的几何意义和二次函数的性质,属于容易题解决此类问题的关键是极坐标方程或参数方程转化为平面直角坐标系方程,并把几何问题代数化8. 【2015高考陕西,理24】(本小题满分10分)选修4-5:不等式选讲已知关于的不等式
31、的解集为(I)求实数,的值;(II)求的最大值【答案】(I),;(II)【解析】试题分析:(I)先由可得,再利用关于的不等式的解集为可得,的值;(II)先将变形为,再利用柯西不等式可得的最大值试题解析:(I)由,得则解得,(II)当且仅当,即时等号成立,故.考点:1、绝对值不等式;2、柯西不等式.【名师点晴】本题主要考查的是绝对值不等式和柯西不等式,属于容易题解题时一定要注意不等式与方程的区别,否则很容易出现错误零点分段法解绝对值不等式的步骤:求零点;划区间,去绝对值号;分别解去掉绝对值的不等式;取每段结果的并集,注意在分段时不要遗漏区间的端点值用柯西不等式证明或求最值要注意:所给不等式的形式
32、是否与柯西不等式的兴致一致,若不一致,需要将所给式子变形;等号成立的条件9. 【2015高考新课标2,理22】选修41:几何证明选讲 如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点 ()证明:;() 若等于的半径,且,求四边形的面积【答案】()详见解析;()【解析】()由于是等腰三角形,所以是的平分线又因为分别与、相切于、两点,所以,故从而()由()知,,,故是的垂直平分线,又是的弦,所以在上连接,则由等于的半径得,所以所以和都是等边三角形因为,所以,因为,所以于是,所以四边形的面积【考点定位】1等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质【
33、名师点睛】平面几何中平行关系的证明往往有三种方法:由垂直关系得出;由角的关系得出;由平行关系的传递性得出;除了用常规方法求面积外,通过割补法,将所求面积转化为易求面积的两个图形的和或者差更简洁10. 【2015高考新课标2,理23】选修4-4:坐标系与参数方程在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线().求与交点的直角坐标;().若与相交于点,与相交于点,求的最大值【答案】()和;()【解析】()曲线的直角坐标方程为,曲线的直角坐标方程为联立解得或所以与交点的直角坐标为和()曲线的极坐标方程为,其中因此得到极坐标为,的极坐标为所以,当时,取得最
34、大值,最大值为【考点定位】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值【名师点睛】()将曲线与的极坐标方程化为直角坐标方程,联立求交点,得其交点的直角坐标,也可以直接联立极坐标方程,求得交点的极坐标,再化为直角坐标;()分别联立与和与的极坐标方程,求得的极坐标,由极径的概念将表示,转化为三角函数的最大值问题处理,高考试卷对参数方程中参数的几何意义和极坐标方程中极径和极角的概念考查加大了力度,复习时要克服把所有问题直角坐标化的误区11. 【2015高考新课标2,理24】(本小题满分10分)选修4-5不等式选讲设均为正数,且,证明:()若,则;()是的充要条件【答案】()详见解析;()
35、详见解析【解析】()因为,由题设,得因此【考点定位】不等式证明【名师点睛】()要证明,只需证明,展开结合已知条件易证;()充要条件的证明需要分为两步,即充分条件的证明和必要条件的证明证明的关键是寻找条件和结论以及它们和已知之间的联系12. 【2014全国2,理20】(本小题满分10分)选修4-1几何证明选讲如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E。证明:()BE=EC;()ADDE=2【解析】()连结AB,AC,由题意知PA=PD,故,因为,所以,从而,因此BE=EC.()由切割线定理得:,因为,所以,由相交弦
36、定理得:=,所以等式成立.【考点定位】平面几何选讲【名师点睛】本题考查三角形外接圆直径的证明,相交弦定理,切割线定理,解题时要认真审题,注意圆的性质的灵活运用13. 【2014全国2,理20】(本小题满分10分)选修44;坐标系与参数方程在直角坐标系xoy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为,.()求C的参数方程;()设点D在C上,C在D处的切线与直线垂直,根据()中你得到的参数方程,确定D的坐标. 【考点定位】参数方程化成普通方程.【名师点睛】本题考查参数方程的运用,中点坐标公式,两点间的距离公式,学生分析解决问题的能力,正确运用参数方程是解决问题的关键14.
37、【2014全国2,理20】(本小题满分10分)选修45:不等式选讲设函数=()证明:2;()若,求的取值范围.【解析】()证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.()因为,所以 ,解得:.【考点定位】绝对值函数及不等式.【名师点睛】本题考查了绝对值函数,绝对值的性质,解绝对值不等式的方法,计算能力,逻辑推理能力,属于基础题15. 【2014课标,理22】(本小题满分10分)选修4-1:几何证明选讲如图,四边形是的内接四边形,的延长线与的延长线交于点,且.()证明:;()设不是的直径,的中点为,且,证明:为等边三角形.【答案】()详见解析;()详见解析.【解析】(I)由题
38、设知四点共圆,所以由已知得,故(II)设的中点为,连接,则由知,故在直线上又不是的直径,的中点为,故,即所以,故又,故由(1)知,所以为等边三角形.【考点定位】1、圆的内接四边形的性质;2、垂径定理的推论【名师点睛】本题考查圆的内接四边形性质,第一问 利用四边形是的内接四边形,可得,由,可得,即可证 明:;第二问设的中点为,连接 ,证明,可得,进而可得,即可证明 为等边三角形,本题考查学生分析解决问题的能力,属于中档题16. 【2014课标,理23】(本小题满分10分)选修44,坐标系与参数方程已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-513773.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
