2021高三数学人教B版一轮学案:第八章 第三节 圆的方程 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高三数学人教B版一轮学案:第八章 第三节圆的方程 WORD版含解析 2021 高三数 学人 一轮 第八 三节 方程 WORD 解析
- 资源描述:
-
1、第三节圆的方程最新考纲考情分析1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程2初步了解用代数方法处理几何问题的思想.1.圆的方程、与圆有关的最值问题、与圆有关的轨迹问题是近几年高考命题的热点2常与直线、椭圆、抛物线等知识结合考查3题型以选择题、填空题为主,有时也会以解答题的形式出现.知识点一 圆的定义及方程1.如果没给出r0,则圆的半径为|r|.2当D2E24F0时,方程x2y2DxEyF0表示一个点;当D2E24Fr2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)20.()(4)已知点A(x1,y1),B(x2
2、,y2),则以AB为直径的圆的方程是(xx1)(xx2)(yy1)(yy2)0.()解析:(1)t0时,方程表示圆心为(a,b),半径为|t|的圆(2)a2(2a)24(2a2a1)0,即2a,即xyDx0Ey0F0.(4)设M(x,y)是圆上异于直径端点A,B的点,由1得(xx1)(xx2)(yy1)(yy2)0.2小题热身(1)圆x2y24x6y0的圆心坐标是(D)A(2,3) B(2,3)C(2,3) D(2,3)解析:圆的方程可化为(x2)2(y3)213,所以圆心坐标是(2,3)(2)方程x2y2xym0表示一个圆,则m的取值范围是(A)A. B.C. D.解析:由题114m0,所以
3、m.故选A.(3)(2020黄山模拟)以线段AB:xy20(0x2)为直径的圆的方程为(B)A(x1)2(y1)22B(x1)2(y1)22C(x1)2(y1)28D(x1)2(y1)28解析:线段AB:xy20(0x2)的两个端点为(0,2),(2,0),圆心为(1,1)半径为,圆的方程为(x1)2(y1)22.(4)若点(1,1)在圆(xa)2(ya)24的内部,则实数a的取值范围是(1,1)解析:由条件知(1a)2(1a)24,即22a24.a21.即1a0),则由题意,得解得因此圆的方程是(x1)2(y1)24,故选C.方法2:AB的中垂线方程为yx,所以由得圆心为(1,1),所以半径
4、为2,因此圆的方程是(x1)2(y1)24,故选C.(2)设所求圆的方程为x2y2DxEyF0.令y0得x2DxF0,所以圆在x轴上的截距之和为x1x2D.令x0,得y2EyF0,所以圆在y轴上的截距之和为y1y2E.由题设x1x2y1y2(DE)2,即DE2.因为A(4,2),B(1,3)在圆上,所以1644D2EF0,19D3EF0,由解得D2,E0,F12,故所求圆的方程为x2y22x120.【答案】(1)C(2)x2y22x120方法技巧 求圆的方程一般有两种常用方法:(1)几何法,通过研究圆的几何性质,确定圆心坐标与半径长,即得到圆的方程;(2)代数法,用待定系数法求解,其关键是根据
5、条件选择圆的方程,若已知圆上三点,则选用圆的一般方程,若已知条件与圆心及半径有关,则选用圆的标准方程.1(2019浙江卷)已知圆C的圆心坐标是(0,m),半径长是r.若直线2xy30与圆C相切于点A(2,1),则m2,r.解析:解法1:设过点A(2,1)且与直线2xy30垂直的直线方程为l:x2yt0,所以22t0,所以t4,所以l:x2y40.令x0,得m2,则r.解法2:因为直线2xy30与以点(0,m)为圆心的圆相切,且切点为A(2,1),所以21,所以m2,r.2已知圆C经过P(2,4),Q(3,1)两点,且在x轴上截得的弦长等于6,则圆C的方程为x2y22x4y80或x2y26x8y
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514151.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
