怎样才能打好初一的数学基础?.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 怎样才能 初一 数学 基础
- 资源描述:
-
1、怎样才能打好初一的数学基础?整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n0)的形式。无限不循环小数和开根开不尽的数叫无理数 ,比如,3.1415926535897932384626.而有理数恰恰与它相反,整数和分数统称为有理数包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是
2、有理数的实数遂称为无理数。所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。有理数分为整数和分数整数又分为正整数、负整数和0分数又分为正分数、负分数正整数和0又被称为自然数如3,-98.11,5.72727272,7/22都是有理数。全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集。相关的内容见数系的扩张。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):加法的交换律 a+b=b+a;加法的结合律 a+(b+c)=(a+b)+c;存在数0,使
3、0+a=a+0=a;对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;乘法的交换律 ab=ba;乘法的结合律 a(bc)=(ab)c;分配律 a(b+c)=ab+ac;存在乘法的单位元10,使得对任意有理数a,1a=a1=a;对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。0a0 文字解释:一个数乘0还于0。此外,有理数是一个序域,即在其上存在一个次序关系。有理数还是一个阿基米德域,即对有理数a和b,a0,b0,必可找到一个自然数n,使nba。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理
4、数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。有理数加减混合运算1.理数加减统一成加法的意义:对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样
5、就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。2.有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。(2)运用加法法则,加法交换律,加法结合律简便运算。一般情况下,有理数是这样分类的:整数、分数;正数、负数和零;负有理数,非负有理数整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数一个困难的问题有理数的边界在哪里?根据定义,无限循环小数和有限小数(整数可认为是小数点后是0
6、的小数),统称为有理数,无限不循环小数是无理数。但人类不可能写出一个位数最多的有理数,对全地球人类,或比地球人更智慧的生物来说是有理数的数,对每个地球人来说,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界,竟然紧靠无理数,任何两个十分接近的无理数中间,都可以加入无穷多的有理数,反之也成立。竟然没有人知道有理数的边界,或者说有理数的边界是无限接近无理数的。定理:位数最多的非无限循环有理数是不可能被写出的,尽管它的定义是有有限位,但它是无限趋近于无理数的,以致于没有手段进行判断。证明:假设位数最多的非无限循环有理数被写出,我们在这个数的最后再加一位,这个数还是有限位有理数,但位数比
7、已写出有理数多一位,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。关于无理数与有理数无法比较的说明:对于定义无限不循环小数是无理数,无理数之外为有理数。则无理数很难被证实,而每一个无理数,无论认识多少位,都有有理数对应,而位数较短的有理数,都没有无理数对应,因此有理数多。对于定义为有限位小数和无限循环小数为有理数,无限不循环数为无理数。对于很多位数多的无法分辨的数没有明确归属,而认为大于特定有限位的数都是无理数的人,才能证明无理数比有理数多,但那明显是将很多很多有理数归为无理数的结果。在这个定义下,由于界限不明,无法进行比较,除非有人能有力的证明
8、。无限不循环小数不是有理数,如:0.10100100010000100000.0.1201900012019012019000120190. 等是无限不循环小数,所以不是有理数循环小数化分数的方法0.777777.有一个数循环,分母是一个9,循环数是7.化分数后是7/90.535353.有两个数循环,分母是两个9,循环数是53.化分数后是53/99我们可以在数轴上表示有理数.注意画数轴的三要素(原点,正方向,单位长度).1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式单独一个数或一个字母也是单项式2、系数单项式中的数字因数叫做这个单项式的系数3、单项式的次数一个单项式中,
9、所有字母的指数的和叫做这个单项式的次数4、多项式几个单项式的和叫做多项式5、多项式的项在多项式中,每个单项式叫做多项式的项 6是常数项6、常数项多项式中,不含字母的项叫做常数项7、多项式的次数多项式里,次数最高的项的次数,就是这个多项式的次数8、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列9、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列10、整式单项式和多项式统称整式。11、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项常数项都是同类项12、合并同类项把多项式中的同类项合并成一项,
10、叫做合并同类项合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变例:合并下列各式的同类项:13、去括号法则 括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“”号,把括号和它前面的“”号去掉,括号里各项都改变符号 例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则 添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“”号,括到括号里的各项都改变符号例:m+2xy+z5=m+(2xy)(z+5)15、整式的加减 整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项
11、16、代数式的恒等变形 一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形如果我有五元钱记作 +5元,我欠别人五元钱记作 -5元,则 +5+(-5)=0 代表我总共只有零元钱。那么 +5-(-5)=10 代表什么?可不可以代表我应还别人五元钱,别人却反而把五元钱还给我,所以我共有10元钱?在系列(一)中提到:如果我有五元钱记作 +5元,我欠别人五元钱记作 5元,则 5+(5)=0 代表我总共只有零元钱。那么 5(5)=10 代表什么?可不可以代表我应还别人五元钱,别人却反而把五元钱还给我,所以我共有10元钱?现解答如下:以上问题也可以说是正确的,分析如下这个问题可以从减法的基本含义来解释,
12、即AB的意义有三点,一是表示A比B多多少? 二是表示从A中减去或拿掉、用去B后还剩多少。三 是引进负数后,可以人为表示为(),即把减号当做负号,并插入一个加号。从以上三点分析知道:第一、()可以表示,假如我昨天有元钱,今天不但没有钱反而欠别人元钱,那么昨天的钱就比今天的钱多元。第二、因为代表不但没有钱反而欠别人元钱,那么减少就是说如果少用去借来的元钱,那我就有现金元钱。笫三、把()表示为(),那么()就表示与我欠别人元钱相反的状态即别人反而欠我元钱,所以这个算式就可以表述为我有元钱,如果加上别人欠我元钱,我总共就有元钱晓红与小红在班上学习成绩最好且难分伯仲,为了明确谁是第一,老师给两个人的每一
13、次考试成绩记一次综合评定分,规定成绩达优秀以上记+5分,成绩优良以下记5分。因为两人名字相近,老师在一次评定中本来是晓红+5分,小红5分却记成晓红5分,小红+5分,为弥补这一错误,应给晓红另外加上多少分?这是一道初看简单实际复杂的应用题,你有兴趣吗?答案在下期公布。我在笫三期中提到:晓红与小红在班上学习成绩最好且难分伯仲,为了明确谁是第一,老师给两个人的每一次考试成绩记一次综合评定分,规定成绩达优秀以上记+5分,成绩优良以下记-5分。因为两人名字相近,老师在一次评定中本来是晓红+5分,小红-5分却记成晓红-5分,小红+5分,为弥补这一错误,应给晓红另外加上多少分?我为什么出这样的题目?因为类似
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
