2022年新教材高考数学 临考题号押第19题 立体几何(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新教材高考数学 临考题号押第19题 立体几何含解析 2022 新教材 高考 数学 考题 号押第 19 立体几何 解析
- 资源描述:
-
1、押第19题 立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上1用向量法求异面直线所成的角(1)建立空间直角坐标系;(2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC,BD的夹角的余弦值为.2用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角3用向量法求二面角求二面角最常用的
2、方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角4平面所成的二面角为,则,如图,AB,CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小如图,分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos|,二面角的平面角大小是向量n1与n2的夹角(或其补角)1(2021湖南高考真题)如图,四棱锥中,底面ABCD是矩形,平面ABCD,E为PD的中点.(1)证明:平面ACE;(2)设,直线PB与平面ABCD所成的角为,求四棱锥的体积.【详解】(1)连接交于点,连接. 在中,因为,所以,因为平面,平
3、面,则平面.(2)因为平面ABCD,所以就是直线PB与平面ABCD所成的角,所以,又,所以,所以四棱锥的体积,所以四棱锥的体积为.2(2021天津高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD的中点(I)求证:平面;(II)求直线与平面所成角的正弦值(III)求二面角的正弦值【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,因为E为棱BC的中点,F为棱CD的中点,所以,所以,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.
4、3(2021浙江高考真题)如图,在四棱锥中,底面是平行四边形,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,由余弦定理可得,所以,由题意且,平面,而平面,所以,又,所以(2)由,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为4(2021北京高考真题)如图:在正方体中,为中点,与平面交于点(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值【详解】(1)如图所示,取的中点,连结,由于为正方体,
5、为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5(2021全国高考真题)在四棱锥中,底面是正方形,若(1)证明:平面平面;(2)求二面角的平面角的余弦值【详解】(1)取的中点为,连接.因为,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.
6、(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1(2022河北秦皇岛二模)如图,在四棱锥中,.(1)证明:平面.(2)若为的中点,求二面角的大小.【解析】(1)证明:由题可知为等边三角形,所以,.在中,由余弦定理得,所以,所以.因为,且,所以平面.因为平面,所以.因为,且相交,所以平面.(2)以为坐标原点,以,的方向分别为,轴的正方向,建立如图所示的空间直角坐标系则,.设平面的法向量为,则令,得.取平面的一个法向量为,则.由图可知二面角为锐角,所以二面角的大小为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
