分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2022年新教材高考数学一轮复习 规范答题增分专项1 高考中的函数与导数(含解析)新人教版.docx

  • 上传人:a****
  • 文档编号:514835
  • 上传时间:2025-12-09
  • 格式:DOCX
  • 页数:10
  • 大小:34.45KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年新教材高考数学一轮复习 规范答题增分专项1 高考中的函数与导数含解析新人教版 2022 新教材 高考 数学 一轮 复习 规范 答题 专项 中的 函数 导数 解析 新人
    资源描述:

    1、规范答题增分专项一高考中的函数与导数1.(2020全国,文21)已知函数f(x)=2ln x+1.(1)若f(x)2x+c,求c的取值范围;(2)设a0,讨论函数g(x)=f(x)-f(a)x-a的单调性.2.(2020全国,理21)设函数f(x)=x3+bx+c,曲线y=f(x)在点12,f12处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.3.(2020全国,理21)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)12x3+1,求a的取值范围.4.已知函数f(x)=ax

    2、2-ax-xln x,且f(x)0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2f(x0)g(x)+12;(3)是否存在正实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,请说明理由.8.已知函数f(x)=sin x-ln(1+x),f(x)为f(x)的导数.证明:(1)f(x)在区间-1,2内存在唯一极大值点;(2)f(x)有且仅有2个零点.规范答题增分专项一高考中的函数与导数1.解设h(x)=f(x)-2x-c,则h(x)=2lnx-2x+1-c,其定义域为(0,+),h(x)=2x-2.(1)当0x0;当x1时,h(x)0.所以h(x)在区间(0,1)内单

    3、调递增,在区间(1,+)内单调递减.从而当x=1时,h(x)取得最大值,最大值为h(1)=-1-c.故当且仅当-1-c0,即c-1时,f(x)2x+c.所以c的取值范围为-1,+).(2)g(x)=f(x)-f(a)x-a=2(lnx-lna)x-a,x(0,a)(a,+).g(x)=2x-ax+lna-lnx(x-a)2=21-ax+lnax(x-a)2.取c=-1,得h(x)=2lnx-2x+2,h(1)=0,则由(1)知,当x1时,h(x)0,即1-x+lnx0.故当x(0,a)(a,+)时,1-ax+lnax0,从而g(x)0.所以g(x)在区间(0,a),(a,+)内单调递减.2.(

    4、1)解f(x)=3x2+b,依题意得f12=0,即34+b=0,解得b=-34.(2)证明由(1)知f(x)=x3-34x+c,f(x)=3x2-34.令f(x)=0,解得x=-12或x=12.当x变化时,f(x)与f(x)随x的变化情况为x(-,-12)-12(-12,12)12(12,+)f(x)+0-0+f(x)单调递增c+14单调递减c-14单调递增因为f(1)=f-12=c+14,所以当c14时,f(x)只有小于-1的零点.由题设可知-14c14.当c=-14时,f(x)只有两个零点-12和1.当c=14时,f(x)只有两个零点-1和12.当-14c14时,f(x)有三个零点x1,x

    5、2,x3,且x1-1,-12,x2-12,12,x312,1.综上,若f(x)有一个绝对值不大于1的零点,则f(x)所有零点的绝对值都不大于1.3.解(1)当a=1时,f(x)=ex+x2-x,f(x)=ex+2x-1.故当x(-,0)时,f(x)0.所以f(x)在区间(-,0)内单调递减,在区间(0,+)内单调递增.(2)f(x)12x3+1等价于12x3-ax2+x+1e-x1.设函数g(x)=12x3-ax2+x+1e-x(x0),则g(x)=-(12x3-ax2+x+1-32x2+2ax-1)e-x=-12xx2-(2a+3)x+4a+2e-x=-12x(x-2a-1)(x-2)e-x

    6、.若2a+10,即a-12,则当x(0,2)时,g(x)0.所以g(x)在区间(0,2)内单调递增,而g(0)=1,故当x(0,2)时,g(x)1,不合题意.若02a+12,即-12a12,则当x(0,2a+1)(2,+)时,g(x)0.所以g(x)在区间(0,2a+1),(2,+)内单调递减,在区间(2a+1,2)内单调递增.由于g(0)=1,所以g(x)1,当且仅当g(2)=(7-4a)e-21,即a7-e24.所以当7-e24a12时,g(x)1.若2a+12,即a12,则g(x)(12x3+x+1)e-x.由于07-e24,12),故由可得12x3+x+1e-x1.故当a12时,g(x

    7、)1.综上,a的取值范围是7-e24,+.4.(1)解f(x)的定义域为(0,+).设g(x)=ax-a-lnx,则f(x)=xg(x),f(x)0等价于g(x)0.因为g(1)=0,g(x)0,所以g(1)=0,而g(x)=a-1x,g(1)=a-1,得a=1.若a=1,则g(x)=1-1x.当0x1时,g(x)1时,g(x)0,g(x)单调递增.所以x=1是g(x)的极小值点,也是最小值点,故g(x)g(1)=0.综上,a=1.(2)证明由(1)知f(x)=x2-x-xlnx,f(x)=2x-2-lnx.设h(x)=2x-2-lnx,则h(x)=2-1x.因为当x0,12时,h(x)0.所

    8、以h(x)在区间0,12内单调递减,在区间12,+内单调递增.又h(e-2)0,h120;当x(x0,1)时,h(x)0.因为f(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f(x0)=0,得lnx0=2(x0-1),故f(x0)=x0(1-x0).由x00,12,得f(x0)f(e-1)=e-2.所以e-2f(x0)0;当x3,23时,f(x)0,故有lnxx=1-t.令g(x)=lnxx,则g(x)=1-lnxx2.由g(x)0,得0xe;由g(x)e.故g(x)在区间(0,e)内单调递增,在区间(e,+)内单调递减.因此g(x)max=g(e)=1e,所以g(x)的值域为-,

    9、1e,要使得方程f(x)=1无实数根,则1-t1e,即t0,f(x)0恒成立.不妨取x=1,有f(1)=et(1+t-e1-t)0.而当t1时,f(1)0,故t0时,f(x)=etx1+tx-e(1-t)xex21+x2-ex2.而当x0时,有ex1+x,故1+x2-ex20,所以f(x)0.所以f(x)在区间(0,+)内单调递减,故当t12时满足题意.当12t1时,01-t1,即11-tlnt1-t0.令h(x)=1+tx-e(1-t)x,则h(0)=0,h(x)=t-(1-t)e(1-t)x=(1-t)t1-t-e(1-t)x.当0x0,此时,h(x)h(0)=0.则当0x0,故f(x)在

    10、区间0,11-tlnt1-t内单调递增.与题设矛盾,不符合题意,舍去.所以,当t12时,函数f(x)在区间(0,+)内单调递减.7.(1)解当a=1时,f(x)=x-lnx,f(x)=1-1x=x-1x.当0x1时,f(x)0,此时f(x)单调递减;当10时,此时f(x)单调递增.即f(x)的极小值为f(1)=1,无极大值.(2)证明f(x)的极小值为1,f(x)在区间(0,e上的最小值为1,即f(x)min=1.又g(x)=1-lnxx2,当0x0,g(x)在区间(0,e上单调递增,g(x)max=g(e)=1e12,在(1)的条件下,f(x)g(x)+12.(3)解假设存在正实数a,使f(

    11、x)=ax-lnx(x(0,e)有最小值3,则f(x)=a-1x=ax-1x.当01a0,g20;当x,2时,g(x)0.所以g(x)在区间(-1,)内单调递增,在区间,2内单调递减,故g(x)在区间-1,2内存在唯一极大值点,即f(x)在区间-1,2内存在唯一极大值点.(2)f(x)的定义域为(-1,+).当x(-1,0时,由(1)知,f(x)在区间(-1,0)内单调递增,而f(0)=0,所以当x(-1,0)时,f(x)0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,所以x=0是f(x)在区间(-1,0上的唯一零点.当x0,2时,由(1)知,f(x)在区间(0,)内单调递增,在区间,2内单调递减,而f(0)=0,f20;当x,2时,f(x)0,所以当x0,2时,f(x)0.从而,f(x)在区间0,2上没有零点.当x2,时,f(x)0,f()1,所以f(x)0,从而f(x)在区间(,+)内没有零点.综上,f(x)有且仅有2个零点.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年新教材高考数学一轮复习 规范答题增分专项1 高考中的函数与导数(含解析)新人教版.docx
    链接地址:https://www.ketangku.com/wenku/file-514835.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1