分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021高二数学寒假作业同步练习题专题05双曲线小题专项练习含解析202102241153.doc

  • 上传人:a****
  • 文档编号:515592
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:7
  • 大小:1.04MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 数学 寒假 作业 同步 练习题 专题 05 双曲线 专项 练习 解析 202102241153
    资源描述:

    1、专题05 双曲线小题专项练习一、巩固基础知识1双曲线:的顶点到其渐近线的距离等于( )。A、B、C、D、【答案】C【解析】渐近线方程为,即,又顶点坐标,则顶点到渐近线的距离为,故选C。2已知中心在原点的双曲线的右焦点为,离心率等于,则的方程是( )。A、B、C、D、【答案】C【解析】,故选C。3已知双曲线:的左、右顶点分别为、,点在双曲线上,若直线斜率的取值范围是,则直线斜率的取值范围是( )。A、B、C、D、【答案】B【解析】、,设,则,则,则,则,故选B。4“”是“方程表示双曲线”的( )。A、充分不必要条件B、必要不充分条件C、充要条件D、既非充分也非必要条件【答案】A【解析】当时,方程

    2、表示双曲线,当时,方程也表示双曲线,故选A。5若双曲线:(,)的离心率为,则该双曲线的渐近线方程为( )。A、B、C、D、【答案】A【解析】,该双曲线的渐近线方程为,故选A。6若,定义使方程“”表示的曲线以为渐近线的角为“等轴角”,则等轴角 。【答案】或【解析】由题意可知,又,则或。7若双曲线:(,)的一条渐近线的倾斜角为,离心率为,则的最小值为 。【答案】【解析】,则,(当且仅当时取等号),则最小值为。二、扩展思维视野8已知圆经过双曲线:的一个顶点和一个焦点,圆心在双曲线上,则圆心到双曲线的中心的距离为( )。A、或B、或C、D、【答案】D【解析】由双曲线性质可得圆经过双曲线同侧的顶点和焦点

    3、,设过右焦点和右顶点,则圆心的横坐标为,代入双曲线,则解得,点到原点的距离,故选D。9已知点是双曲线:(,)的左焦点,点是右顶点,过且垂直于轴的直线与双曲线交于、两点,若是锐角三角形,则双曲线的离心率的的取值范围是( )。A、B、C、D、【答案】A【解析】根据对称性中,若是锐角三角形,则为锐角,即在中,得,又,则,即,两边都除以得,即,即,又,则,故选A。10设、分别是双曲线:(,)的左、右焦点,若双曲线的右支上存在一点,使得,为坐标原点,且,则双曲线的离心率为( )。A、B、C、D、【答案】C【解析】,即,在中,又,故选C。11已知双曲线:的离心率为,则实数的值为 。【答案】【解析】,解得。

    4、12已知双曲线:的左、右焦点分别为、,过的直线交双曲线的左支于、两点,则的最小值为 。【答案】【解析】,两式相加得,当且仅当轴时取等号,最小值为。13设、是双曲线:(,)的两个焦点,是上一点。若,且的最小内角为,则的离心率为 。【答案】【解析】设为双曲线右支上一点,则,又,则,的最小内角,由余弦定理得,即,。14已知双曲线:的左、右焦点分别是、,点(,)在其右支上,且满足,则的值是 。【答案】【解析】,即,又,即,又恒成立,则,则数列是以首项为,公差为的等差数列,即,则。三、提升综合素质15已知是双曲线:()的右焦点,为坐标原点,设是双曲线上一点,则的大小不可能是( )。A、B、C、D、【答案

    5、】C【解析】,两条渐近线倾角为、,则或,故选C。16已知点、是双曲线的两个焦点,过点的直线交双曲线的一支与点、两点,若为等边三角形,则双曲线的离心率为( )。A、B、C、D、【答案】A【解析】为等边三角形,则,设的边长为,则,则,则,故选A。17我国著名数学家华罗庚曾说过“数缺形时少直观,形少数时难入微”,事实上,有很多代数问题可以转化为几何问题加以解决。如:与相关的代数问题可以转化为点与点之间距离的几何问题。结合上述观点,可得方程的解为 。【答案】【解析】,其几何意义为动点到定点和的距离之差的绝对值为,动点即为双曲线与的交点,则,即,。18已知双曲线:(,)离心率为,、分别为左、右顶点,点为

    6、双曲线在第一象限内的任意一点,点为坐标原点,若、的斜率分别为、,设,则的取值范围为 。【答案】【解析】,则,设,则,又双曲线的渐近线方程为,。19已知双曲线:的右焦点为,过的直线与交于、两点,若,则满足条件的的条数为 。【答案】【解析】,则,若、都在右支上,当垂直于轴时,将代入得,则,满足,若、分别在两支上,两顶点的距离为,满足的直线有条,且关于轴对称,综上有条。20若双曲线:(,)的左、右焦点分别为、,离心率为,过的直线与双曲线的右支相交于、两点,若是以点为直角顶点的等腰直角三角形,则 。【答案】【解析】,。21如图所示,在半径为的半圆内有一内接梯形,它的下底为圆的直径,上底的端点在圆周上,若双曲线以、为焦点,且过、两点,则当梯形周长最大时,双曲线的实轴长为 。【答案】【解析】,设,作于点,则,则梯形周长,当,即时周长有最大值,这时,双曲线的实轴长为。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021高二数学寒假作业同步练习题专题05双曲线小题专项练习含解析202102241153.doc
    链接地址:https://www.ketangku.com/wenku/file-515592.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1