《原创作品》2013年普通高考数学科一轮复习精品学案 第6讲 函数与方程.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原创作品 原创作品2013年普通高考数学科一轮复习精品学案 第6讲 函数与方程 原创 作品 2013 普通 高考 数学科 一轮 复习 精品 函数 方程
- 资源描述:
-
1、高考资源网() 您身边的高考专家2013年普通高考数学科一轮复习精品学案第6讲 函数与方程一课标要求:1结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。二命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问
2、题有关。预计2013年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力。(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。三要点精讲1方程的根与函数的零点(1)函数零点概念:对于函数,把使成立的实数叫做函数的零点。函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。二次函数的零点:),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点;),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,
3、二次函数有一个二重零点或二阶零点;),方程无实根,二次函数的图象与轴无交点,二次函数无零点。零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。既存在,使得,这个也就是方程的根。2.二分法二分法及步骤:对于在区间,上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,验证,给定精度;(2)求区间,的中点;(3)计算:若=,则就是函数的零点;若,则令=(此时零点);若0,f(x)在区间p,q上的最大值M,最小值m,令
4、x0= (p+q)。若p,则f(p)=m,f(q)=M;若px0,则f()=m,f(q)=M;若x0q,则f(p)=M,f()=m;若q,则f(p)=M,f(q)=m。(3)二次方程f(x)=ax2+bx+c=0的实根分布及条件。方程f(x)=0的两根中一根比r大,另一根比r小af(r)0;二次方程f(x)=0的两根都大于r 二次方程f(x)=0在区间(p,q)内有两根二次方程f(x)=0在区间(p,q)内只有一根f(p)f(q)0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立。四典例解析题型1:方程的根与函数零点例1(1)方程lgx+x=3的解所在区间为( )A
5、(0,1) B(1,2) C(2,3) D(3,+)(2)设a为常数,试讨论方程的实根的个数。解析:(1)在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图)。它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较与2的大小。当x=2时,lgx=lg2,3-x=1。由于lg21,因此2,从而判定(2,3),故本题应选C。(2)原方程等价于即构造函数和,作出它们的图像,易知平行于x轴的直线与抛物线的交点情况可得:当或时,原方程有一解;当时,原方程有两解;当或时,原方程无解。点评:图象法求函数零点,
6、考查学生的数形结合思想。本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间。数形结合,要在结合方面下功夫。不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断。例2设函数在上满足,且在闭区间0,7上,只有。()试判断函数的奇偶性;()试求方程=0在闭区间2005,2005上的根的个数,并证明你的结论。解析:由f(2x)=f(2+x),f(7x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数,由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(III) 又故f(x)在0,10和10,0上均有有两个解,从而可知函数在0,2005上有402个解,在2
7、005.0上有400个解,所以函数在2005,2005上有802个解。点评:解题过程注重了函数的数字特征“”,即函数的零点,也就是方程的根。题型2:零点存在性定理例3设函数,其中常数为整数。(1)当为何值时,;(2)定理:若函数在上连续,且与异号,则至少存在一点,使得试用上述定理证明:当整数时,方程在内有两个实根。解析:(1)函数f(x)=xln(x+m),x(m,+)连续,且当x(m,1m)时,f (x)f(1m)当x(1m, +)时,f (x)0,f(x)为增函数,f(x)f(1m)根据函数极值判别方法,f(1m)=1m为极小值,而且对x(m, +)都有f(x)f(1m)=1m故当整数m1
8、时,f(x) 1m0(2)证明:由(I)知,当整数m1时,f(1m)=1-m1时,类似地,当整数m1时,函数f(x)=x-ln(x+m),在 上为连续增函数且 f(1-m)与异号,由所给定理知,存在唯一的故当m1时,方程f(x)=0在内有两个实根。点评:本题以信息给予的形式考察零点的存在性定理。解决该题的解题技巧主要在区间的放缩和不等式的应用上。例4若函数在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是( )A若,不存在实数使得;B若,存在且只存在一个实数使得;C若,有可能存在实数使得; D若,有可能不存在实数使得;解析:由零点存在性定理可知选项D不正确;对于选项B,可通过反例“在
9、区间上满足,但其存在三个解”推翻;同时选项A可通过反例“在区间上满足,但其存在两个解”;选项D正确,见实例“在区间上满足,但其不存在实数解”。点评:该问题详细介绍了零点存在性定理的理论基础。题型3:二分法的概念例5关于“二分法”求方程的近似解,说法正确的是( )A“二分法”求方程的近似解一定可将在a,b内的所有零点得到;B“二分法”求方程的近似解有可能得不到在a,b内的零点;C应用“二分法”求方程的近似解,在a,b内有可能无零点;D“二分法”求方程的近似解可能得到在a,b内的精确解;解析:如果函数在某区间满足二分法题设,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,只要限定了近似
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
