2022年高考数学一轮复习 考点规范练15 导数与函数的单调性、极值、最值(含解析)新人教A版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练15 导数与函数的单调性、极值、最值含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 15 导数 函数 调性 极值 解析 新人
- 资源描述:
-
1、考点规范练15导数与函数的单调性、极值、最值基础巩固1.函数f(x)=(x-3)ex的单调递增区间是()A.(-,2)B.(0,3)C.(1,4)D.(2,+)答案:D解析:函数f(x)=(x-3)ex的导数为f(x)=(x-3)ex=ex+(x-3)ex=(x-2)ex.由导数与函数单调性的关系,得当f(x)0时,函数f(x)单调递增,此时由不等式f(x)=(x-2)ex0,解得x2.2.若x=1是函数f(x)=ax+ln x的极值点,则()A.f(x)有极大值-1B.f(x)有极小值-1C.f(x)有极大值0D.f(x)有极小值0答案:A解析:x=1是函数f(x)=ax+lnx的极值点,f
2、(1)=0,a+11=0,a=-1.f(x)=-1+1x=0x=1.当x1时,f(x)0,当0x0,因此f(x)有极大值-1.3.已知f(x)=14x2+sin2+x,f(x)为f(x)的导函数,则f(x)的图象是()答案:A解析:f(x)=14x2+sin2+x=14x2+cosx,f(x)=12x-sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f(x)=12-cosx,当-3x12,f(x)0,故函数y=f(x)在区间-3,3内单调递减,排除C.故选A.4.设函数f(x)是定义在区间(0,2)内的函数f(x)的导函数,f(x)=f(2-x),当0x时,若f(x)sin x-
3、f(x)cos x0,a=12f3,b=0,c=-32f76,则()A.abcB.bcaC.cbaD.ca0,所以当0x时,g(x)在区间(0,)内递增,所以g3g2g56=g76,即ab0,bR)的一个极值点,则ln a与b-1的大小关系是()A.ln ab-1B.ln a0),则g(a)=1a-3=1-3aa,g(a)在区间0,13内递增,在区间13,+内递减,故g(a)max=g13=1-ln30.故lnab-1.6.已知函数f(x)=-12x2+4x-3ln x在区间t,t+1上不单调,则t的取值范围是.答案:(0,1)(2,3)解析:由题意知f(x)=-x+4-3x=-x2+4x-3
4、x=-(x-1)(x-3)x.由f(x)=0得x1=1,x2=3,可知1,3是函数f(x)的两个极值点.则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间t,t+1上就不单调,由t1t+1或t3t+1,得0t1或2t0解得0x1,由g(x)1,即函数g(x)在区间(0,1)内单调递增,在区间(1,+)内单调递减.当a0时,令g(x)=0,得x=1或x=12a,若12a12,则由g(x)0解得x1或0x12a,由g(x)0解得12ax1,即0a0解得x12a或0x1,由g(x)0解得1x12a,即函数g(x)在区间(0,1),12a,+内单调递增,在区间1,12a内单调递减;若1
5、2a=1,即a=12,则在区间(0,+)内恒有g(x)0,即函数g(x)在区间(0,+)内单调递增.综上可得,当a=0时,函数g(x)在区间(0,1)内单调递增,在区间(1,+)内单调递减;当0a12时,函数g(x)在区间0,12a内单调递增,在区间12a,1内单调递减,在区间(1,+)内单调递增.8.已知函数f(x)=ax2+bx+cex(a0)的导函数y=f(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为-e3,求f(x)的极大值及f(x)在区间-5,+)内的最大值.解:(1)因为f(x)=ax2+bx+cex,所以f(x)=-ax2+(2a-b)x+b-
6、cex,设g(x)=-ax2+(2a-b)x+b-c.因为a0,所以由题意知:当-3x0,即f(x)0;当x0时,g(x)0,即f(x)5=f(0),所以函数f(x)在区间-5,+)内的最大值是5e5.9.已知函数f(x)=ln ax-x-ax(a0).(1)求函数f(x)的单调区间及最值;(2)求证:对于任意正整数n,均有1+12+13+1nlnenn!(e为自然对数的底数).答案:(1)解由题意f(x)=x-ax2,当a0时,函数f(x)的定义域为(0,+),此时函数f(x)在区间(0,a)内是减函数,在区间(a,+)内是增函数,故f(x)min=f(a)=lna2,无最大值.当a0时,函
7、数f(x)的定义域为(-,0),此时函数f(x)在区间(-,a)内是减函数,在区间(a,0)内是增函数,故f(x)min=f(a)=lna2,无最大值.(2)证明取a=1,由(1)知f(x)=lnx-x-1xf(1)=0,故1x1-lnx=lnex,取x=1,2,3,n,则1+12+13+1nlnenn!.10.设函数f(x)=3x2+axex(aR).(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1)处的切线方程;(2)若f(x)在区间3,+)内为减函数,求a的取值范围.解:(1)对f(x)求导得f(x)=(6x+a)ex-(3x2+ax)ex(ex)
8、2=-3x2+(6-a)x+aex.因为f(x)在x=0处取得极值,所以f(0)=0,即a=0.当a=0时,f(x)=3x2ex,f(x)=-3x2+6xex,故f(1)=3e,f(1)=3e,从而f(x)在点(1,f(1)处的切线方程为y-3e=3e(x-1),化简得3x-ey=0.(2)由(1)知f(x)=-3x2+(6-a)x+aex.令g(x)=-3x2+(6-a)x+a,由g(x)=0解得x1=6-a-a2+366,x2=6-a+a2+366.当xx1时,g(x)0,即f(x)0,故f(x)为减函数;当x1x0,即f(x)0,故f(x)为增函数;当xx2时,g(x)0,即f(x)0,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-517366.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
3. Daily News Task Sheet -Euro 2022 Set to Break Records.pdf
