2022年高考数学一轮复习 高考大题专项练五 高考中的解析几何(含解析)新人教A版(文).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 高考大题专项练五 高考中的解析几何含解析新人教A版文 2022 年高 数学 一轮 复习 高考 专项 中的 解析几何 解析 新人
- 资源描述:
-
1、高考大题专项练五高考中的解析几何一、非选择题1.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.解:(1)设A(x1,y1),B(x2,y2),则x1x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率k=y1-y2x1-x2=x1+x24=1.(2)由y=x24,得y=x2.设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=
2、x24得x2-4x-4m=0.当=16(m+1)0,即m-1时,x1,2=22m+1.从而|AB|=2|x1-x2|=42(m+1).由题设知|AB|=2|MN|,即42(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.2.已知曲线C:y=x22,D为直线y=-12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E0,52为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.答案:(1)证明设Dt,-12,A(x1,y1),则x12=2y1.由于y=x,所以切线DA的斜率为x1,故y1+12x1-t=x1.整理得2tx1-2y
3、1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点0,12.(2)解由(1)得直线AB的方程为y=tx+12.由y=tx+12,y=x22可得x2-2tx-1=0.于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则Mt,t2+12.由于EMAB,而EM=(t,t2-2),AB与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=1.当t=0时,|EM|=2,所求圆的方程为x2+y-522=4;当t=1时,|EM|=2,所求圆的方程为x2+y-522=2.3.设抛物线C
4、:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:ABM=ABN.答案:(1)解当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM的方程为y=12x+1或y=-12x-1.(2)证明当l与x轴垂直时,AB为MN的垂直平分线,所以ABM=ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)(k0),M(x1,y1),N(x2,y2),则x10,x20.由y=k(x-2),y2=2x得ky2-2y-4k=0,可知y1+y2=2k,y1y2=-4.直线BM,BN的斜率之和为k
5、BM+kBN=y1x1+2+y2x2+2=x2y1+x1y2+2(y1+y2)(x1+2)(x2+2).将x1=y1k+2,x2=y2k+2及y1+y2,y1y2的表达式代入式分子,可得x2y1+x1y2+2(y1+y2)=2y1y2+4k(y1+y2)k=-8+8k=0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以ABM=ABN.综上,ABM=ABN.4.已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为77|OB|.(1)求椭圆C的方程;(2)若椭圆C1的方程为x2m2+y2n2=1(mn0),椭圆C2的方程为x2m2+y2n2=
6、(0,且1),则称椭圆C2是椭圆C1的倍相似椭圆.如图,已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M,N,试求弦长|MN|的取值范围.解:(1)设椭圆C的方程为x2a2+y2b2=1(ab0),直线AB的方程为x-a+yb=1.F1(-1,0)到直线AB的距离d=|b-ab|a2+b2=77b,a2+b2=7(a-1)2.又b2=a2-1,解得a=2,b=3,故椭圆C的方程为x24+y23=1.(2)椭圆C的3倍相似椭圆C2的方程为x212+y29=1,若切线l垂直于x轴,则其方程为x=2,易求得|MN|=26.若切线l不垂直于x轴,可设其方程为y=kx+b,将y
7、=kx+b代入椭圆C的方程,得(3+4k2)x2+8kbx+4b2-12=0,=(8kb)2-4(3+4k2)(4b2-12)=48(4k2+3-b2)=0,即b2=4k2+3, (*)设M,N两点的坐标分别为(x1,y1),(x2,y2),将y=kx+b代入椭圆C2的方程,得(3+4k2)x2+8kbx+4b2-36=0,此时x1+x2=-8kb3+4k2,x1x2=4b2-363+4k2,|x1-x2|=43(12k2+9-b2)3+4k2,|MN|=1+k243(12k2+9-b2)3+4k2=461+k23+4k2=261+13+4k2.3+4k23,11+13+4k243,即26b0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-517695.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
