2022年高考数学一轮复习 高考大题专项练六 高考中的概率与统计(含解析)新人教A版(理).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 高考大题专项练六 高考中的概率与统计含解析新人教A版理 2022 年高 数学 一轮 复习 高考 专项 中的 概率 统计 解析 新人
- 资源描述:
-
1、高考大题专项练六高考中的概率与统计一、非选择题1.(2020山东,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:g/m3),得下表:PM2.5SO20,50(50,150(150,4750,3532184(35,756812(75,1153710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的22列联表:PM2.5SO20,150(150,4750,75(75,115(3)根据(2)中的列联表,判断能否在犯错误的概率不超过0.01的前提下认为
2、该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),P(K2k)0.0500.0100.001k3.8416.63510.828解:(1)根据抽查数据,该市100天空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得22列联表:PM2.5SO20,150(150,4750,756416(75,1151010(3)根据(2)的列联表得K2的观测值k=100(6410
3、-1610)2802074267.484.由于7.4846.635,故在犯错误的概率不超过0.01的前提下认为该市一天空气中PM2.5浓度与SO2浓度有关.2.(2020全国,理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得i=120xi=60,i=120yi=1 200,i=120(xi-x)2=80,i=120(
4、yi-y)2=9 000,i=120(xi-x)(yi-y)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法.并说明理由.附:相关系数r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2,21.414.解:(1)由已知得样本平均数y=120i=120yi=60,从而该地区这种野
5、生动物数量的估计值为60200=12000.(2)样本(xi,yi)(i=1,2,20)的相关系数r=i=120(xi-x)(yi-y)i=120(xi-x)2i=120(yi-y)2=800809000=2230.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.3.已知某单位甲、乙、丙
6、三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人.(2)随机变量X的所有可能取值为0,1,2
7、,3.P(X=k)=C4kC33-kC73(k=0,1,2,3).所以,随机变量X的分布列为X0123P13512351835435随机变量X的数学期望E(X)=0135+11235+21835+3435=127.设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=BC,且B与C互斥.由知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(BC)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.4.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动
8、物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,8)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-517703.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
