2021高考数学一轮复习 第一部分 考点通关练 第六章 立体几何 考点测试44 直线、平面垂直的判定及其性质(含解析)苏教版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学一轮复习 第一部分 考点通关练 第六章 立体几何 考点测试44 直线、平面垂直的判定及其性质含解析苏教版 2021 高考 数学 一轮 复习 第一 部分 考点 通关 第六 测试 44
- 资源描述:
-
1、考点测试44直线、平面垂直的判定及其性质高考概览本考点是高考必考知识点,各种题型都有考查,分值为5分或10分,中等难度考纲研读1以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理2能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题一、基础小题1已知互相垂直的平面,交于直线l,若直线m,n满足m,n,则()Aml Bmn Cnl Dmn答案C解析由,且l,m,若m,那么ml,故A项错误;若ml,且已知n,那么nl,mn,故B项错误;因为n,l,所以nl,故C项正确;若m,且ml,那么mn,故D项错误故选C.2已知m,n是空间中的两条不同的直线,是
2、空间中的两个不同的平面,则下列命题正确的是()A若mn,m,则nB若,m,则mC若mn,n,则mD若m,m,则答案D解析符合已知条件的直线n还可以在平面内,所以A错误;符合已知条件的直线m还可以在平面内,所以B错误;符合已知条件的直线m可以在平面内,或者与平面相交但不垂直,或者与平面平行,所以C错误;对于D,根据面面垂直的判定定理可知其正确性故选D.3若平面平面,平面平面直线l,则()A垂直于平面的平面一定平行于平面B垂直于直线l的直线一定垂直于平面C垂直于平面的平面一定平行于直线lD垂直于直线l的平面一定与平面,都垂直答案D解析垂直于平面的平面与平面平行或相交,故A错误;垂直于直线l的直线与
3、平面可以相交、平行或在平面内,故B错误;垂直于平面的平面与直线l平行或相交,故C错误,D正确4如图,四棱锥PABCD中,PAB与PBC是正三角形,平面PAB平面PBC,ACBD,则下列结论不一定成立的是()APBACBPD平面ABCDCACDPD平面PBD平面ABCD答案B解析如图,取BP的中点O,连接OA,OC,易得BPOA,BPOCBP平面OACBPACA正确;又ACBDAC平面PBDACPD,平面PBD平面ABCD,所以C,D也正确故选B.5已知m,n为异面直线,m平面,n平面,直线l满足lm,ln,l,l,则()A且lB且lC与相交,且交线垂直于lD与相交,且交线平行于l答案D解析由m
4、平面,直线l满足lm,且l,得l,又n平面,ln,l,所以l,由直线m,n为异面直线,且m平面,n平面,得与相交,否则,若,则推出mn,与m,n异面矛盾,所以,相交,且交线平行于l,故选D.6在正方形ABCD中,E,F分别是AB,BC的中点,G是EF的中点,沿DE,EF,FD将正方形折起,使A,B,C三点重合于点P,构成四面体,则在四面体PDEF中,给出下列结论:PD平面PEF;DG平面PEF;平面PDE平面PDF.其中正确结论的序号是()A B C D答案C解析如图所示,因为DAAE,DCCF,所以折叠后DPPE,DPPF,所以DP平面PEF,所以正确;由DP平面PEF,可知DG平面PEF是
5、不正确的,所以错误;由PEPF,PEDP,可得PE平面PDF,又PE平面PDE,所以平面PDE平面PDF,所以正确综上可知,正确结论的序号为.故选C.7如图,在梯形ABCD中,ADBC,ABC90,ADBCAB234,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出下列四个结论:DFBC;BDFC;平面BDF平面BCF;平面DCF平面BCF,则上述结论可能正确的是()A B C D答案B解析因为BCAD,AD与DF相交但不垂直,所以BC与DF不垂直,所以错误;设点D在平面BCF上的射影为点P,当BPFC时就有BDFC,而ADBCAB234可使条件满足,所以正确;当点D在平
6、面BCF上的射影P落在BF上时,DP平面BDF,从而平面BDF平面BCF,所以正确;因为点D在平面BCF上的射影不可能在FC上,所以错误8如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只要填写一个你认为正确的条件即可)答案DMPC(或BMPC)解析如图,连接AC,BD,则ACBD,因为PA底面ABCD,所以PABD.又PAACA,所以BD平面PAC,所以BDPC.所以当DMPC(或BMPC)时,即有PC平面MBD.而PC平面PCD,所以平面MBD平面PCD.二、高考小题9(2017全国卷)在正方体ABCDA1B1
7、C1D1中,E为棱CD的中点,则()AA1EDC1 BA1EBDCA1EBC1 DA1EAC答案C解析如图,连接A1E,D1E,B1C,BC1,DC1.假设A1EDC1,A1D1平面DCC1D1,A1D1DC1,又A1E平面A1D1E,A1D1平面A1D1E,A1EA1D1A1,DC1平面A1D1E,又D1E平面A1D1E,DC1D1E,而D1E与DC1不垂直,A1EDC1不成立,故A错误,同理可证B,D错误由条件易知,BC1B1C,BC1CE,又CEB1CC,BC1平面CEA1B1.又A1E平面CEA1B1,A1EBC1.故选C.10(2019北京高考)已知l,m是平面外的两条不同直线给出下
8、列三个论断:lm;m;l.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_.答案若m且l,则lm(或若lm,l,则m)解析已知l,m是平面外的两条不同直线,由lm与m,不能推出l,因为l可以与平行,也可以与相交但不垂直;由lm与l能推出m;由m与l可以推出lm.故正确的命题是或.11(2019全国卷)已知ACB90,P为平面ABC外一点,PC2,点P到ACB两边AC,BC的距离均为,那么P到平面ABC的距离为_答案解析如图,过点P作PO平面ABC于O,则PO为P到平面ABC的距离再过O作OEAC于E,OFBC于F,连接PC,PE,PF,则PEAC,PFBC.又PEPF,
9、所以OEOF,所以CO为ACB的平分线,即ACO45.在RtPEC中,PC2,PE,所以CE1,所以OE1,所以PO.三、模拟小题12(2020泰安期末)若m,n是两条不同的直线,是三个不同的平面,则下列为真命题的是()A若m,则m B若m,n,则mnC若m,m,则 D若,则答案C解析对于A,当且仅当m与平面,的交线垂直时,命题才成立,所以原命题为假命题;对于B,若m,n,则直线m,n可能异面,可能平行,还可能相交,所以原命题为假命题;对于C,由m,m,可得平面内一定存在直线与直线m平行,进而得出该直线垂直于平面,从而,所以原命题为真命题;对于D,若,则平面与平面可能相交或平行,所以原命题为假
10、命题故选C.13(2019湖北七市(州)联考)设直线m与平面相交但不垂直,则下列说法中正确的是()A在平面内有且只有一条直线与直线m垂直B过直线m有且只有一个平面与平面垂直C与直线m垂直的直线不可能与平面平行D与直线m平行的平面不可能与平面垂直答案B解析在平面内可能有无数条直线与直线m垂直,这些直线是互相平行的,A错误;因为直线m与平面相交但不垂直,所以过直线m必有并且也只有一个平面与平面垂直,B正确;类似于A,在平面外可能有无数条直线垂直于直线m并且平行于平面,C错误;与直线m平行且与平面垂直的平面有无数个,D错误故选B.14(2019景德镇模拟)将图1中的等腰直角三角形ABC沿斜边BC上的
11、中线折起得到空间四面体ABCD(如图2),则在空间四面体ABCD中,AD与BC的位置关系是()A相交且垂直 B相交但不垂直C异面且垂直 D异面但不垂直答案C解析在题图1中,ADBC,故在题图2中,ADBD,ADDC,又因为BDDCD,所以AD平面BCD,又BC平面BCD,D不在BC上,所以ADBC,且AD与BC异面,故选C.15(2019佛山五校联考)如图所示,直线PA垂直于O所在的平面,ABC内接于O,且AB为O的直径,点M为线段PB的中点现有结论:BCPC;OM平面PAC;点B到平面PAC的距离等于线段BC的长其中正确的是()A BC D答案B解析对于,PA平面ABC,PABC.AB为O的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-520556.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
浙江省十校联盟2021届高三寒假返校联考物理试题 PDF版含答案.pdf
