分享
分享赚钱 收藏 举报 版权申诉 / 13

类型2021高考数学(文)统考版二轮复习专题限时集训11 立体几何 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:522409
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:13
  • 大小:504.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021高考数学文统考版二轮复习专题限时集训11立体几何 WORD版含解析 2021 高考 数学 统考 二轮 复习 专题 限时 集训 11 立体几何 WORD 解析
    资源描述:

    1、专题限时集训(十一)立体几何1(2019全国卷)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离解(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以MEB1C,且MEB1C又因为N为A1D的中点,所以NDA1D由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MNED又MN平面C1DE,所以MN平面C1DE.(2)过点C作C1E的垂线,垂足为H.由已知可得DEBC,DEC1C,所以DE平面C1C

    2、E,故DECH.从而CH平面C1DE,故CH的长即为点C到平面C1DE的距离由已知可得CE1,C1C4,所以C1E,故CH.从而点C到平面C1DE的距离为.2(2020全国卷)如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1MN,且平面A1AMN平面EB1C1F;(2)设O为A1B1C1的中心,若AOAB6,AO平面EB1C1F,且MPN,求四棱锥BEB1C1F的体积解(1)证明:因为M,N分别为BC,B1C1的中点,所以MNCC1.又由已知得AA1CC1,

    3、故AA1MN.因为A1B1C1是正三角形,所以B1C1A1N.又B1C1MN,故B1C1平面A1AMN.所以平面A1AMN平面EB1C1F.(2)AO平面EB1C1F,AO平面A1AMN,平面A1AMN平面EB1C1FPN,故AOPN.又APON,故四边形APNO是平行四边形,所以PNAO6,APONAM,PMAM2,EFBC2.因为BC平面EB1C1F,所以四棱锥BEB1C1F的顶点B到底面EB1C1F的距离等于点M到底面EB1C1F的距离如图,作MTPN,垂足为T,则由(1)知,MT平面EB1C1F,故MTPMsinMPN3.底面EB1C1F的面积为(B1C1EF)PN(62)624.所以

    4、四棱锥BEB1C1F的体积为24324.3(2019全国卷)图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB1,BEBF2,FBC60.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的四边形ACGD的面积解(1)证明:由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面由已知得ABBE,ABBC,又BE,BC面BCGE,BEBCB,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)取CG的中点M,连

    5、接EM,DM.因为ABDE,AB平面BCGE,所以DE平面BCGE,故DECG.由已知,四边形BCGE是菱形,且EBC60,得EMCG,故CG平面DEM.因此DMCG.在RtDEM中,DE1,EM,故DM2.所以四边形ACGD的面积为4.4(2018全国卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由解(1)证明:由题设知,平面CMD平面ABCD,交线为CD因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又B

    6、CCMC,所以DM平面BMC而DM平面AMD,故平面AMD平面BMC(2)当P为AM的中点时,MC平面PBD证明如下:如图,连接AC,BD,AC交BD于O.因为ABCD为矩形,所以O为AC的中点连接OP,因为P为AM中点,所以MCOP.又MC平面PBD,OP平面PBD,所以MC平面PBD1(2020怀仁模拟)如图,已知P是平行四边形ABCD所在平面外一点, M,N分别是AB,PC的中点(1)求证: MN平面PAD;(2)若MNBC4,PA4,求异面直线PA与MN所成的角的大小解(1)取PD的中点H,连接AH,NH,N是PC的中点,NH綊DCM是AB的中点,且DC綊AB,NH綊AM,即四边形AM

    7、NH为平行四边形MNAH.又MN平面PAD,AH平面PAD,MN平面PAD(2)连接AC并取其中点O,连接OM,ON.则OM綊BC,ON綊PAONM就是异面直线PA与MN所成的角,由MNBC4,PA4,得OM2,ON2.MO2ON2MN2,ONM30,即异面直线PA与MN成30的角2(2020汕头一模)在四棱锥PABCD中,平面PAC平面ABCD,且有ABDC,ACCDDAAB(1)证明:BCPA;(2)若PAPCAC,Q在线段PB上,满足PQ2QB,求三棱锥PACQ的体积解(1)证明:不妨设AB2a,则ACCDDAa,由ACD是等边三角形,可得ACD,ABDC,CAB.由余弦定理可得BC2A

    8、C2AB22ACABcos3a2,即BCa,BC2AC2AB2.ACB90,即BCAC又平面PAC平面ABCD,平面PAC平面ABCDAC,BC平面ABCD,BC平面PAC,PA平面PAC,BCPA(2)依题意得,PAPC,VPACQVQPACVBPACSPACBC2.3(2020深圳二模)如图所示,四棱锥SABCD中,SA平面ABCD,ABCBAD90,ABADSA1,BC2,M为SB的中点(1)求证:AM平面SCD;(2)求点B到平面SCD的距离解(1)证明:取SC的中点N,连接MN和DN,M为SB的中点,MNBC,且MNBC,ABCBAD90,AD1,BC2,ADBC,且ADBC,AD綊

    9、MN,四边形AMND是平行四边形,AMDN,AM平面SCD,DN平面SCD,AM平面SCD(2)ABAS1,M为SB的中点,AMSB,SA平面ABCD,SABC,ABCBAD90, BCAB,BC平面SAB, BCAM,AM平面SBC由(1)可知AMDN,DN平面SBC,DN平面SCD,平面SCD平面SBC,作BESC交SC于E,则BE平面SCD,在直角三角形SBC中,SBBCSCBE,BE,即点B到平面SCD的距离为.4(2020长沙模拟)如图,已知三棱锥PABC的平面展开图中,四边形ABCD为边长等于的正方形,ABE和BCF均为正三角形,在三棱锥PABC中(1)证明:平面PAC平面ABC;

    10、(2)求三棱锥PABC的表面积和体积解(1)设AC的中点为O,连接BO,PO.由题意,得PAPBPC,PO1,AOBOCO1.因为在PAC中,PAPC,O为AC的中点,所以POAC因为在POB中,PO1,OB1,PB,PO2OB2PB2,所以POOB因为ACOBO,AC,OB平面ABC,所以PO平面ABC,因为PO平面PAC,所以平面PAC平面ABC(2)三棱锥PABC的表面积S222 2,由(1)知,PO平面ABC,所以三棱锥PABC的体积为VSABCPO 1.1.已知四棱柱ABCDA1B1C1D1的底面是直角梯形,ADDC,AB1,ADDC2,AA12,且AA1平面ABCD,F为A1B1的

    11、中点(1)在图中画出一个过BC1且与AF平行的平面(要求写出作法);(2)求四棱柱ABCDA1B1C1D1的表面积解(1)在平面CDD1C1中,过D作DPAF,交C1D1于P,在平面CDD1C1中,过C1作C1EDP,交CD于E,连接BE,此时AFC1E,过BC1且与AF平行的平面为平面BEC1.(2)四棱柱ABCDA1B1C1D1的底面是直角梯形,ADDC,AB1,ADDC2,AA12,且AA1平面ABCD,四棱柱ABCDA1B1C1D1的表面积为:S2S梯形ABCDS矩形ABB1A1S矩形ADD1A1S矩形DCC1D1S矩形BCC1B1221222222162.2.如图,在三棱柱FABED

    12、C中,侧面ABCD是菱形,G是边AD的中点平面ADEF平面ABCD,ADE90.(1)求证:ACBE;(2)在线段BE上求点M(说明M点的具体位置),使得DE平面GMC,并证明你的结论解(1)证明:如图,连接BD,则由四边形ABCD是菱形可得ACBD,平面ABCD平面ADEF,平面ABCD平面ADEFAD,且DEAD, DE平面ABCD又AC平面ABCD, ACDE.BDDED, AC平面BDE,BE平面BDE, ACBE.(2)设BDCGO,在BDE中,过O作DE的平行线交BE于点M,M点即为所求的点OM在平面MGC内,DE不在平面MGC内,且OMDE, DE平面MGC四边形ABCD为菱形,

    13、且G是AD的中点,DOGBOC,且,又OMDE,于是,故点M为线段BE上靠近点E的三等分点3如图,在直角梯形ABCD中,ABDC,ABC90,AB2DC2BC,E为AB的中点,沿DE将ADE折起,使得点A到点P位置,且PEEB,M为PB的中点,N是BC上的动点(与点B,C不重合)(1)求证:平面EMN平面PBC;(2)设三棱锥BEMN和四棱锥PEBCD的体积分别为V1和V2,当N为BC中点时,求的值解(1)证明:PEEB,PEED,EBEDE,PE平面EBCD,又PE平面PEB,平面PEB平面EBCD,BC平面EBCD,BCEB,平面PBC平面PEBPEEB,PMMB,EMPB,BCPBB,E

    14、M平面PBC,又EM平面EMN,平面EMN平面PBC(2)N是BC的中点,点M,P到平面EBCD的距离之比为,.4.如图,三棱柱ABCA1B1C1中,平面AA1B1B平面ABC,D是AC的中点(1)求证:B1C平面A1BD;(2)若A1ABACB60,ABBB1,AC2,BC1,求三棱锥CAA1B的体积解(1)连接AB1交A1B于点O,则O为AB1的中点, D是AC的中点,ODB1C,又OD平面A1BD,B1C平面A1BD,B1C平面A1BD(2)AC2,BC1,ACB60,AB2AC2BC22ACBCcosACB3,得AB. AC2AB2BC2,得ABBC又平面AA1B1B平面ABC,平面AA1B1B平面ABCAB,BC平面AA1B1BA1AB60,ABBB1AA1,AA1.SA1ABABAA1sinA1AB.VCA1ABSA1ABBC1.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021高考数学(文)统考版二轮复习专题限时集训11 立体几何 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-522409.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1