山西省朔州市怀仁一中2016-2017学年高二上学期第三次月考数学试卷(理科) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省朔州市怀仁一中2016-2017学年高二上学期第三次月考数学试卷理科 WORD版含解析 山西省 朔州市 怀仁 一中 2016 2017 学年 上学 第三次 月考 数学试卷 理科 WORD 解析
- 资源描述:
-
1、2016-2017学年山西省朔州市怀仁一中高二(上)第三次月考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1如果直线l与平面不垂直,那么在平面内()A不存在与l垂直的直线B存在一条与l垂直的直线C存在无数条与l垂直的直线D任一条都与l垂直2命题:“对任意的xR,x3x2+10”的否定是()A不存在xR,x3x2+10B存在x0R,x03x02+10C存在x0R,x03x02+10D对任意的xR,x3x2+103双曲线的()A实轴长为,虚轴长为4,渐近线方程为,离心率B实轴长为,虚轴长为4,渐近线方程为,离心率C实轴长
2、为,虚轴长为4,渐近线方程为,离心率D实轴长为,虚轴长为8,渐近线方程为,离心率4一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A48+12B48+24C36+12D36+245已知正方体ABCDA1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()ABCD6已知双曲线的方程为=1,点A,B在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为另一焦点,则ABF1的周长为()A2a+2mBa+mC4a+2mD2a+4m7F1,F2是椭圆的两个焦点,A为椭圆上一点,且AF1F2=45,则三角形AF1F2的面积为()A7BCD8
3、已知直线x+2ay1=0与直线(a2)xay+2=0平行,则a的值是()AB或0CD或09如图,在斜三棱柱ABCA1B1C1中,BCA=90,BC1AC,则C1在底面ABC的射影H必在()A直线AB上B直线BC上C直线AC上DABC内部10在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为()ABCD11设P(x,y)是圆x2+(y+4)2=4上任意一点,则的最小值为()A +2B2C5D612已知正四棱柱ABCDA1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()ABCD二、填空题(每题5分,满分20
4、分,将答案填在答题纸上)13曲线与曲线y+|ax|=0(aR)的交点有个14设命题p:|4x3|1;命题q:x2(2a+1)x+a(a+1)0若p是q的必要而不充分条件,则实数a的取值范围是15过椭圆内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程16如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将AFD沿AF折起,使平面ABD平面ABC,在平面ABD内过点D作DKAB,K为垂足,设AK=t,则t的取值范围是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17已知方程kx2+y2=4,其中kR
5、,试就k的不同取值讨论方程所表示的曲线类型18已知命题p:函数y=x2+2(a2a)x+a42a3在2,+)上单调递增q:关于x的不等式ax2ax+10解集为R若pq假,pq真,求实数a的取值范围19已知四棱锥ABCDE,其中AB=BC=AC=BE=1,CD=2,CD面ABC,BECD,F为AD的中点()求证:EF面ABC;()求证:平面ADE平面ACD;()求四棱锥ABCDE的体积20如图所示,四棱锥PABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=()证明:平面PBE平面PAB;()求二面角ABEP的大小21双曲线(a0,b0)满足如下条件:(
6、1)ab=;(2)过右焦点F的直线l的斜率为,交y轴于点P,线段PF交双曲线于点Q,且|PQ|:|QF|=2:1,求双曲线的方程22在平面直角坐标系xoy中,椭圆的离心率为,直线y=x被椭圆C截得的弦长为(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆的顶点)点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点求OMN面积的最大值2016-2017学年山西省朔州市怀仁一中高二(上)第三次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1如果直线l与平面不垂
7、直,那么在平面内()A不存在与l垂直的直线B存在一条与l垂直的直线C存在无数条与l垂直的直线D任一条都与l垂直【考点】直线与平面垂直的性质【分析】平面内与l在内的射影垂直的直线,垂直于直线l,这样的直线有无数条,故可得结论【解答】解:平面内与l在内的射影垂直的直线,垂直于直线l,这样的直线有无数条,故A、B不正确,C正确;若在平面内,任一条都与l垂直,则直线l与平面垂直,与题设矛盾,故D不正确故选C2命题:“对任意的xR,x3x2+10”的否定是()A不存在xR,x3x2+10B存在x0R,x03x02+10C存在x0R,x03x02+10D对任意的xR,x3x2+10【考点】命题的否定【分析
8、】直接利用全称命题是否定是特称命题写出结果即可【解答】解:因为全称命题的否定是特称命题,所以,命题:“对任意的xR,x3x2+10”的否定是:存在x0R,x03x02+10故选:B3双曲线的()A实轴长为,虚轴长为4,渐近线方程为,离心率B实轴长为,虚轴长为4,渐近线方程为,离心率C实轴长为,虚轴长为4,渐近线方程为,离心率D实轴长为,虚轴长为8,渐近线方程为,离心率【考点】双曲线的标准方程【分析】根据双曲线的标准方程来求实轴长、虚轴长、渐近线方程以及离心率即可【解答】解:双曲线方程是,a2=5,b2=4,c=3,实轴长=2a=2,虚轴长=2b=4,渐近线方程y=x=x,离心率e=故选:A4一
9、个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A48+12B48+24C36+12D36+24【考点】由三视图求面积、体积【分析】由三视图及题设条件知,此几何体为一个三棱锥,其高已知,底面是长度为6的等腰直角三角形,故先求出底面积,再各个侧面积,最后相加即可得全面积【解答】解:此几何体为一个三棱锥,其底面是边长为6的等腰直角三角形,顶点在底面的投影是斜边的中点由底面是边长为6的等腰直角三角形知其底面积是=18又直角三角形斜边的中点到两直角边的距离都是3,棱锥高为4,所以三个侧面中与底面垂直的侧面三角形高是4,底面边长为6,其余两个侧面的斜高为=5故三个侧面中与底面垂直的三角形的面积
10、为46=12,另两个侧面三角形的面积都是=15故此几何体的全面积是18+215+12=48+12故选A5已知正方体ABCDA1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()ABCD【考点】异面直线及其所成的角;用空间向量求直线间的夹角、距离【分析】设正方体ABCDA1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能够求出异面直线AE与D1F所成角的余弦值【解答】解:设正方体ABCDA1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A(2,0,0),E(2,2,1)D1
11、(0,0,2),F(0,2,1)=(0,2,1),=(0,2,1),设异面直线AE与D1F所成角为,则cos=|cos,|=|0|=故选B6已知双曲线的方程为=1,点A,B在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为另一焦点,则ABF1的周长为()A2a+2mBa+mC4a+2mD2a+4m【考点】双曲线的简单性质【分析】利用双曲线的定义可得|AF1|AF2|=2a,|BF1|BF2|=2a,进而得到其周长【解答】解:|AF1|AF2|=2a,|BF1|BF2|=2a,又|AF2|+|BF2|=|AB|=m,|AF1|+|BF1|=4a+m,ABF1的周长=|AF1|
12、+|BF1|+|AB|=4a+2|AB|=4a+2m故选C7F1,F2是椭圆的两个焦点,A为椭圆上一点,且AF1F2=45,则三角形AF1F2的面积为()A7BCD【考点】椭圆的简单性质【分析】求出F1F2的 长度,由椭圆的定义可得AF2=6AF1,由余弦定理求得AF1=,从而求得三角形AF1F2的面积【解答】解:由题意可得 a=3,b=,c=,故,AF1+AF2=6,AF2=6AF1,AF22=AF12+F1F222AF1F1F2cos45=AF124AF1+8,(6AF1)2=AF124AF1+8,AF1=,故三角形AF1F2的面积S=8已知直线x+2ay1=0与直线(a2)xay+2=0
13、平行,则a的值是()AB或0CD或0【考点】直线的一般式方程与直线的平行关系【分析】由直线的平行关系可得a的方程,解方程排除重合可得【解答】解:直线x+2ay1=0与直线(a2)xay+2=0平行,1(a)=2a(a2),解得a=或a=0,经验证当a=0时两直线重合,应舍去,故选:A9如图,在斜三棱柱ABCA1B1C1中,BCA=90,BC1AC,则C1在底面ABC的射影H必在()A直线AB上B直线BC上C直线AC上DABC内部【考点】棱柱的结构特征【分析】由题意结合线面垂直的判定可得平面BCC1平面ABC,再由线面垂直的性质可得C1在底面ABC的射影H的位置【解答】解:如图,BCA=90,A
14、CBC,又BC1AC,且BC1BC=B,AC平面BCC1,而AC平面ABC,平面BCC1平面ABC在平面BCC1中,过C1作C1HBC,垂足为H则C1H平面ABCC1在底面ABC的射影H必在直线BC上故选:B10在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为()ABCD【考点】球的体积和表面积【分析】球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了【解答】解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,则V球=()3=故选C11设P(x,y)是圆x2+(y+4)2=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-523261.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018-2019学年高中语文人教版选修新闻阅读与实践课件:第二章 1 动态消息两篇 .ppt
