数学.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学
- 资源描述:
-
1、高三复习专题:圆锥曲线方程 专题设计立意及思路:高考试题中,解析几何试题的分值一般占20左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14左右,选择、填空、解答三种题型均有选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热解答题的题型设计主要有三类:(1) 圆锥曲线的有关元素计算关系证明或范围的确定;(2) 涉及与圆锥曲线平移与对称变换、最值或位置关系的问题;(3) 求平面曲线(整体或部分)的方程或轨迹近年来,高考中解析几何综合题的难度有所下降随着高考的逐步完
2、善,结合上述考题特点分析,预测今后高考的命题趋势是:将加强对于圆锥曲线的基本概念和性质的考查,加强对于分析和解决问题能力的考查因此,教学中要注重对圆锥曲线定义、性质、以及圆锥曲线基本量之间关系的掌握和灵活应用高考第二阶段的复习,应在继续作好知识结构调整的同时,抓好数学基本思想、数学基本方法的提炼,进行专题复习;做好“五个转化”,即从单一到综合、从分割到整体、从记忆到应用、从慢速摸仿到快速灵活、从纵向知识到横向方法.这一复习过程,要充分体现分类指导、分类要求的原则,内容的选取一定要有明确的目的性和针对性,要充分发挥教师的创造性,更要充分考虑学生的实际,要密切注意学生的信息反馈,防止过分拔高,加重
3、负担.因此,在圆锥曲线这一章的复习中,设计了分类复习、分层复习、层层递进的复习步骤.一、高考考点回顾0104四年高考圆锥曲线试题回顾:年次题号题型内容类别分值总分百分率01年全国文科7选择题概念、性质类5分21分140%14填空题概念、性质类4分20解答题直线和圆锥曲线关系类12分理科7选择题概念、性质类5分21分140%14填空题概念、性质类4分19解答题直线和圆锥曲线关系类12分02年全国文科7选择题概念、性质类5分28分187%11选择题概念、性质类5分16填空题概念、性质类4分21解答题与圆锥曲线有关的轨迹类14分理科6选择题概念、性质类5分21分140%14填空题概念、性质类4分19
4、解答题概念、性质类12分03年全国文科3选择题概念、性质类5分24分160%5选择题概念、性质类5分22解答题与圆锥曲线有关的轨迹类14分理科2选择题概念、性质类5分24分160%8选择题概念、性质类5分21解答题与圆锥曲线有关的轨迹类14分04年全国文科7选择题概念、性质类5分24分160%8选择题直线和圆锥曲线关系类5分22解答题直线和圆锥曲线关系类14分理科7选择题概念、性质类5分22分147%8选择题直线和圆锥曲线关系类5分21解答题直线和圆锥曲线关系类12分04年浙江文科6选择题直线和圆锥曲线关系类5分24分160%11选择题概念、性质类5分22解答题与圆锥曲线有关的轨迹类14分理科
5、4选择题直线和圆锥曲线关系类5分22分147%9选择题概念、性质类5分21解答题与圆锥曲线有关的轨迹类12分 从以上四年的高考题中可以看出选择、填空题主要考察圆锥曲线有关的概念和性质问题;而解答题则是以直线和圆锥曲线关系、求轨迹类问题为主,当然也是圆锥曲线的概念性质为前提.所以在复习中,要求学生掌握一些直线和圆锥曲线关系和求轨迹问题的一般解题思路及思想方法,同时加强对圆锥曲线的概念和性质的理解和灵活应用的训练.二、基础知识梳理(一)概念及性质1椭圆及其标准方程 第一定义、第二定义;标准方程(注意焦点在哪个轴上);椭圆的简单几何性质(a、b、c、e的几何意义,准线方程,焦半径);椭圆的参数方程x
6、=acos,y=bsin,当点P在椭圆上时,可用参数方程设点的坐标,把问题转化为三角函数问题.2 双曲线及其标准方程:第一定义、第二定义(注意与椭圆类比);标准方程(注意焦点在哪个轴上);双曲线的简单几何性质(a、b、c、e的几何意义、准线方程、焦半径、渐近线).3 抛物线及其标准方程:定义以及定义在解题中的灵活应用(抛物线上的点到焦点的距离问题经常转化为到准线的距离);标准方程(注意焦点在哪个轴上、开口方向、p的几何意义)四种形式;抛物线的简单几何性质(焦点坐标、准线方程、与焦点有关的结论).(二)常见结论、题型归类及应对思路:1中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为Ax2+Bx
7、21.2共渐近线的双曲线标准方程为为参数,0).3焦半径、焦点弦问题(1) 椭圆焦半径公式:在椭圆中,F、F分别左右焦点,P(x0,y0)是椭圆是一点,则:|PF1|=a+ex0 |PF2|=a-ex0 过椭圆(ab0)左焦点的焦点弦为AB,则,过右焦点的弦.(2)双曲线焦半径公式:设P(x0,y0)为双曲线(a0,b0)上任一点,焦点为F1(-c,0),F2(c,0),则:当P点在右支上时,;当P点在左支上时,;(e为离心率)(3)抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p0)上任意一点,F为焦点,则;y2=2px (p0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B
8、(x2,y2),则有如下结论:x1+x2+p;y1y2=p2,x1x2=.(4)椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a0,b0)的焦点到渐进线的距离为b.4直线和圆锥曲线相交时的一般弦长问题一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ,这里体现了解析几何“设而不求”的解题思想.5中点弦问题处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(ab0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a0,b0
9、),类似可得:KABKOM=;对于y2=2px(p0)抛物线有KAB;另外,也可以用韦达定理来处理.6求与圆锥曲线有关的轨迹问题的常用方法(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)0,是求轨迹的最基本的方法;(2)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;(3)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;(4)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
