《同步辅导》2015高中数学北师大版必修一导学案:《函数的单调性的应用》.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的单调性的应用
- 资源描述:
-
1、第7课时函数的单调性的应用1.理解函数单调性的实质,会用函数单调性解决相关问题.2.理解复合函数的单调性,并会证明和判断.3.熟悉单调性在研究函数中的应用.函数的单调性是函数的一个重要性质,是高考的必考内容之一.因此应理解单调函数及其几何意义,会根据定义判断、证明函数的单调性,会求函数的单调区间,能综合运用单调性解决一些问题.函数的单调性与函数的值域、不等式等知识极为密切,是高考命题的热点. 问题1:判断或证明一个函数在区间D上是增(减)函数的方法有:(1);(2)图像法(即通过画出函数图像,观察图像,确定单调区间);(3)定义法,其过程是:作差变形判断符号,其中难点是变形.问题2:复合函数的
2、单调性的判断:复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数单调性u=g(x)增增减减y=f(u)增减增减y=fg(x)即有结论:“同增异减”.问题3:单调函数经运算后,所得函数单调性的规律:若f(x),g(x)均为增(减)函数,则f(x)+g(x)在公共定义域上为函数;若f(x)为增(减)函数,则-f(x)为函数;若f(x)0,且f(x)为增函数,则为函数,为函数.问题4:(一) 函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2).那么,称M是函数y=f(x)的最大值
3、.函数最大值的几何意义:函数图像上的纵坐标.(二)函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1);(2).那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图像上的纵坐标.1.若函数y=mx+b在(-,+)上是增函数,那么().A.b0B.b0D.m02.已知函数f(x)=8+2x-x2,则().A.f(x)在(-,0)上是减函数B.f(x)是减函数C.f(x)是增函数D.f(x)在(-,0)上是增函数3.函数y=在区间2,6上的最大值是,最小值是.4.已知定义域在R上的函数y=f(x)满足f(-x)=-f(x),在(0,+)上是增函数,且f
4、(x)0时,f(x)1时,f(x)0;对任意正实数x、y,都有f(xy)=f(x)+f(y),求证:f(x)在(0,+)上是递减函数.求函数y=的单调区间.求函数y=在区间1,2上的最大值和最小值.定义在(-1,1)上的函数f(x)满足f(-x)=-f(x),且f(1-a)+f(1-a2)0,若f(x)是(-1,1)上的减函数,求实数a的取值范围.1.已知一次函数y=kx-k,若y随x的增大而减小,则它的图像过().A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限2.若函数f(x)=x2+2(a-1)x+2在区间4,+)上是增函数,则实数a的取值范围是().A.
5、a3B.a-3C.a-3D.a53.已知f(x)=ax2-3ax+a2-1(a0,求a的取值范围.1.(2010年天津卷)设函数f(x)=x-,对任意x1,+),f(mx)+mf(x)0,故C正确.2.D由于函数f(x)=8+2x-x2=-(x-1)2+9,其图像是开口向下的抛物线,对称轴为x=1,结合其图像可知,该函数的递增区间是(-,1,递减区间是(1,+),据此可知,D正确.3.2(法一)设2x1x26,则有f(x1)-f(x2)=-=.2x10,(x1-1)(x2-1)0.f(x1)f(x2),即函数y=在区间2,6上是减函数.当x=2时,函数y=在区间2,6上取得最大值f(2)=2;
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
