分享
分享赚钱 收藏 举报 版权申诉 / 4

类型数学人教A版选修4-1学案:互动课堂 第一讲四 直角三角形的射影定理 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:529283
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:4
  • 大小:4.08MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学人教A版选修4-1学案:互动课堂 第一讲四直角三角形的射影定理 WORD版含解析 学人 选修 互动 课堂 第一 直角三角形 射影 定理 WORD 解析
    资源描述:

    1、互动课堂重难突破一、射影所谓射影,就是正投影.其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这条直线上的正投影.如图1-4-1,AB在AC上的射影是线段AC;BC在AC上的射影是点C;AC、BC在AB上的射影分别是AD、BD,这样,RtABC中的六条线段就都有了名称,它们分别是:两条直角边(AC、BC),斜边(AB),斜边上的高(CD),两条直角边在斜边上的射影(AD、BD).图1-4-1二、直角三角形的射影定理由于角的关系,图1-4-1中,三个直角三角形具有相似关系,于是RtABC的六条线段之间存在着比例关

    2、系.ACDCBD,有=,转化为等积式即CD2=ADBD;ACDABC,有=,转化为等积式即AC2=ABAD;BCDBAC,有=,转化为等积式即BC2=BABD.用语言来表述,就是在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.这一结论常作为工具用于证明和求值.如图1-4-2,在RtABC中,ACB90,CD是AB上的高.已知AD 4,BD 9,就可以求CD、AC.由射影定理,得CD2=ADBD=4936.因为边长为正值,所以CD 6,AC2=ADAB=4(49)52.所以AC213.我们还可以求出BC、AB,以及ABC的面积等

    3、.图1-4-2三、刨根问底问题1在直角三角形中,我们已经学过三边之间的一个重要关系式,如图1-4-2,在RtABC中,ACB90,那么AC2+BC2=AB2,这一结论被称作勾股定理,同样是在直角三角形中,勾股定理和射影定理有什么联系?如何说明这种联系?探究:如图1-4-2,在RtABC中,ACB90,CD是AB上的高.应用射影定理,可以得到AC2BC2ADAB +BDAB=(AD +BD)AB =AB2.由此可见,利用射影定理可以证明勾股定理.过去我们是用面积割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定理,而且这种方法简洁明快,比面积法要方便得多.将两者结合起来,在直角三角形的六

    4、条线段中,应用射影定理、勾股定理,就可从任意给出的两条线段中,求出其余四条线段的长度.问题2几何图形是最富于变化的,直角三角形更是如此,但不管怎样变化,其基本图形体现的规律却是相同的,如射影定理的基本图形,这时,从复杂图形中分离出基本图形,就成为解决问题的关键.那么从复杂图形中分离出基本图形有什么窍门吗?能举例说明吗?探究:在图形的变化中熟悉并掌握射影定理的使用方法,有助于快速发现解题思路,这当中的关键就是把握基本图形,从所给图形中分离出基本图形.如:(1)在图1-4-3(c)中,求证:CFCA=CGCB.(2)在图1-4-3(a)中,求证:FGBC=CEBG.(3)在图1-4-3(d)中,求

    5、证:CD3=AFBGAB;BC2AC2=CFFA;BC3AC3=BGAE.就可以这样来思考:在第(1)题中,观察图形则发现分别使用CD2=CFCA和CD2=CGCB即可得到证明.第(2)题可用综合分析法探求解题的思路:欲证FGBC=CEBG,只需证=,而这四条线段分别属于BFG和BEC,能发现这两个三角形存在公共角EBC,可选用“两角对应相等”或“两边对应成比例,夹角相等”来证明相似.图1-4-3或者在图1-4-3(a)中可分解出两个射影定理的基本图形:“RtBDE中DGBE”及“RtBDC中DFBC”,在两个三角形中分别使用射影定理中的BD2进行代换,得到BGBE =BFBC,化成比例式后,

    6、可用“两边对应成比例,夹角相等”来证明含有公共角EBC的BFG和BEC相似.你可以来尝试分析第(3)小题.活学巧用【例1】直角三角形两直角边在斜边上的射影长分别为5和3,则两条直角边的长分别为()A.3和5B.9和25C.40和24D.和思路解析:直角三角形两直角边在斜边上的射影长分别为5和3,直接应用“射影定理”可求出两直角边的长分别为和.答案:D【例2】如图1-4-4(a)中,CD垂直平分AB,点E在CD上,DFAC,DGBE,F、G分别为垂足.求证:AFAC=BGBE.思路解析:将图1-4-4(a)分解出两个基本图形1-4-4(b)和(c),再观察结论,就会发现,所要证的等积式的左、右两

    7、边分别满足图1-4-4(b)和(c)中的射影定理:AFAC=AD2,BGBE =DB2,通过代换线段的平方(AD2=DB2)就可以证明所要的结论.图1-4-4证明:CD垂直平分AB,ACD和BDE均为直角三角形,并且AD =BD.又DFAC,DGBE,AFAC =AD2,BGBE =DB2.AD2=DB2,AFAC=BGBE.【例3】如图1-4-5,在ABC中,CDAB于D,DEAC于E,DFBC于F,求证:CEFCBA.图1-4-5思路解析:要证明CEFCBA,题设已具备了BCA =ECF,再找出一对角相等变得不容易,因此,考虑证明BCA与ECF的夹边成比例,即=,即证CECA =CFCB,

    8、再从已知出发考虑问题,在RtADC中,DEAC,根据定理能推出CD2=CECA,同理可得CD2=CFCB,这样,CECA =CFCB就能得证.证明:ADC是直角三角形,DEAC,CD2=CECA.同理可得CD2=CFCB.CECA =CFCB,即=.又BCA =ECF,CEFCBA.【例4】如图1-4-6,已知RtABC中,ACB =90,CDAB于D,DEAC于E,DFBC于F.求证:AEBFAB=CD3.图1-4-6思路解析:分别在三个直角三角形RtABC、RtADC、RtBDC中运用射影定理,再将线段进行代换,就可以实现等积式的证明.证明:RtABC中,ACB=90,CDAB,CD2=ADBD.CD4=AD2BD2.又RtADC中,DEAC,RtBDC中,DFBC,AD2=AEAC,BD2=BFBC.CD4=AEBFACBC.又ACBC =ABCD,CD4=AEBFABCD.AEBFAB=CD3.【例5】如图,已知AD为ABC的高,垂足为D,DEAB于E,DFAC于F,求证: =.图1-4-7思路解析:要证=,只要证ABAE =AFAC即可,考虑题目的条件,应用射影定理得AD2=AEAB,AD2=AFAC,从而达到证明的目的.证明:在RtADB中,ADB=90,DEAB,AD2=AEAB.同理可证AD2=AFAC.AEAB =AFAC,即=.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学人教A版选修4-1学案:互动课堂 第一讲四 直角三角形的射影定理 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-529283.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1