分享
分享赚钱 收藏 举报 版权申诉 / 4

类型数学人教A版选修4-1素材:教材梳理 第一讲四直角三角形的射影定理 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:529324
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:4
  • 大小:252.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学人教A版选修4-1素材:教材梳理 第一讲四直角三角形的射影定理 WORD版含解析 学人 选修 素材 教材 梳理 第一 直角三角形 射影 定理 WORD 解析
    资源描述:

    1、庖丁巧解牛知识巧学一、射影所谓射影,就是正投影.其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这条直线上的正投影.如图1-4-2,AB在AC上的射影是线段AC;BC在AC上的射影是点C;AC、BC在AB上的射影分别是AD、BD,这样,RtABC中的六条线段就都有了名称,它们分别是:两条直角边(AC、BC),斜边(AB),斜边上的高(CD),两条直角边在斜边上的射影(AD、BD).图1-4-2二、直角三角形的射影定理由于角之间的关系,图1-4-2中三个直角三角形具有相似关系,于是RtABC的六条线段之间存在着比

    2、例关系.ACDCBD,有,转化为等积式,即CD2=ADBD;ACDABC,有,转化为等积式,即AC2=ABAD;BCDBAC,有,转化为等积式,即BC2=BABD.用语言来表述,就是在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项. 联想发散 这一结论常作为工具用于证明和求值.如图1-4-3,在RtABC中,C90,CD是AB上的高.已知AD4,BD9,就可以求CD、AC.由射影定理,得CD2=ADBD=4936.因为边长为正值,所以CD6,AC2=ADAB=4(49)52.所以AC.我们还可以求出BC、AB,以及ABC的面积等

    3、.问题探究问题1 在直角三角形中,我们已经学过三边之间的一个重要关系式,如图1-4-3,在RtABC中,C90,那么AC2BC2=AB2,这一结论被称作勾股定理,同样是在直角三角形中,勾股定理和射影定理有什么联系?如何说明这种联系?图1-4-3思路:将射影定理产生的式子AC2=ABAD和BC2=BABD左右两边分别相加.探究:如图1-4-3,在RtABC中,C90,CD是AB上的高.应用射影定理,可以得到AC2BC2ADABBDAB=(ADBD)AB=AB2.由此可见,利用射影定理可以证明勾股定理.过去我们是用面积割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定理,而且这种方法简洁明

    4、快,比面积法要方便得多.将两者结合起来,在直角三角形的六条线段中,应用射影定理、勾股定理,就可从任意给出的两条线段中,求出其余四条线段的长度.问题2 几何图形是最富于变化的,直角三角形更是如此,但不管怎样变化,其基本图形体现的规律却是相同的,如射影定理的基本图形.这时,从复杂图形中分离出基本图形,就成为解决问题的关键.那么从复杂图形中分离出基本图形有什么窍门呢?你能举例说明吗?思路:从所给图形中分离出基本图形,利用基本图形写出结论.探究:在图形的变化中熟悉并掌握射影定理的使用方法,有助于快速发现解题思路.这当中的关键就是把握基本图形,从所给图形中分离出基本图形.如:(1)在图1-4-4(c)中

    5、,求证:CFCA=CGCB.(2)在图1-4-4(a)中,求证:FGBC=CEBG.(3)在图1-4-4(d)中,求证:CD3=AFBGAB;BC2AC2=CFFA;BC3AC3=BGAE.就可以这样来思考:图1-4-4 在第(1)题中,观察图形则发现分别使用CD2=CFCA和CD2=CGCB即可得到证明.第(2)题可用综合分析法探求解题的思路:欲证FGBC=CEBG,只需证,而这四条线段分别属于BFG和BEC,能发现这两个三角形存在公共角EBC,可选用“两角对应相等”或“两边对应成比例,夹角相等”来证明相似.或者在图1-4-4(a)中可分解出两个射影定理的基本图形:“RtADE中DGBE”及

    6、“RtBDC中DFBC”,在两个三角形中分别使用射影定理中的BD2进行代换,得到BGBE=BFBC,化成比例式后,可用“两边对应成比例,夹角相等”来证明含有公共角EBC的BFG和BEC相似.你可以尝试着自己分析第(3)小题.典题热题例1如图1-4-5(a)中,CD垂直平分AB,点E在CD上,DFAC,DGBE,F、G分别为垂足.求证:AFAC=BGBE.思路分析:从图1-4-5中分解出两个基本图形145(b)和(c),再观察结论,就会发现,所要证的等积式的左、右两边分别满足图1-4-5(b)和(c)中的射影定理:AFAC=AD2,BGBE=DB2,通过代换线段的平方(AD2=DB2),就可以证

    7、明所要的结论.图1-4-5证明:CD垂直平分AB,ACD和BDE均为直角三角形,并且AD=BD.又DFAC,DGBE,AFAC=AD2,BGBE=DB2,AD2=DB2,AFAC=BGBE. 深化升华 将原图分成两部分来看,分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的,在求解此类问题时,一定要注意对图形的剖析.例2如图1-4-6,在ABC中,CDAB于D,DEAC于E,DFBC于F,求证:CEFCBA.图1-4-6思路分析:要证明CEFCBA,题设中已具备了BCA=ECF,再找出一对角相等就不太容易了,因此,考虑证明BCA与ECF的夹边成比例,即,即证CECA=CFCB,再从已知

    8、条件出发考虑问题,在RtADC中,DEAC,根据定理能推出CD2=CECA,同理可得CD2=CFCB,这样,CECA=CFCB,问题就能得证.证明:ADC是直角三角形,DEAC,CD2=CECA.同理,可得CD2=CFCB.CECA=CFCB,即.又BCA=ECF,CEFCBA. 深化升华 当题目中缺少角相等时,应该考虑利用相等的角的两边对应成比例,即及时转换解题思路,而不能只想到找两对角相等,因为我们还有其他的判定定理.例3如图1-4-7,已知RtABC中,ACB=90,CDAB于D,DEAC于E,DFBC于F,求证:AEBFAB=CD3.图1-4-7思路分析:分别在三个直角三角形RtABC

    9、、RtADC、RtBDC中运用射影定理,再将线段进行代换,就可以实现等积式的证明.证明:RtABC中,ACB=90,CDAB,CD2=ADBD.CD4=AD2BD2.又RtADC中,DEAC,RtBDC中,DFBC,AD2=AEAC,BD2=BFBC.CD4=AEBFACBC.又ACBC=ABCD,CD4=AEBFABCD.AEBFAB=CD3.例4如图1-4-8,在ABC中,D、F分别在AC、BC上,且ABAC,AFBC,BDDCFC1,求AC.图1-4-8思路分析:由数形结合易知ABC是直角三角形,AF为斜边上的高线,CF是直角边AC在斜边上的射影,AC为所求,已知的另外两边都在BDC中,

    10、且BDDC1,即BDC是等腰三角形.因此,可以过D作DEBC,拓开思路.由于DE、AF都垂直于BC,又可以利用比例线段的性质,逐步等价转化求得AC.解:在ABC中,设AC为x,ABAC,AFBC,又FC1,根据射影定理,得AC2=FCBC,即BCx2.再由射影定理,得AF2=BFFC=(BC-FC)FC,即AF2=x2-1.AF=.在BDC中,过D作DEBC于E,BDDC1,BEEC.又AFBC,DEAF,.DE=.在RtDEC中,DE2EC2=DC2,即()2()2=12,=1.由,DE=,整理得x6=4.x=.AC=. 深化升华 本题体现了对基本图形、基本性质的综合应用.还应该注意,作垂线构造直角三角形是解直角三角形时常用的方法.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学人教A版选修4-1素材:教材梳理 第一讲四直角三角形的射影定理 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-529324.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1