数学公式:因式分解的方法.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学公式 因式分解 方法
- 资源描述:
-
1、数学公式:因式分解的方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。小编为大家整理了数学公式:因式分解的方法,方便大家查阅学习。一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元.【例】在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则原式=(y+1)(y+2)-12=y2+3y+2-12=y2+3y-10=(y+5)(y-2)=(x2+x+5)(x2+x-2)=(x2
2、+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。 平方差公式:a²-b²=(a+b)(a-b); 完全平方公式:a²±2ab+b²=(a±b) ²注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a3+b3=(a+b)(a²-ab+b²); 立方差公式:a3-b3=(a-b)(a²+ab+b²); 完全立方公式
3、:a3±3a2b+3ab2±b3=(a±b)3.【例】a²+4ab+4b² =(a+2b) ²三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。【例】m²+5n-mn-5m=m²-5m-mn+5n = (m²-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的
4、两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。【例】bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).五、配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。【例】x²+
5、3x-40=x²+3x+2.25-42.25=(x+1.5)²-(6.5)²=(x+8)(x-5).六、十字相乘法这种方法有两种情况: x²+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q) . kx²+mx+n型的式子的因式分解如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx²+mx+n=(ax+b)(cx+d).图示如下:&
6、bull;a b•וc d例如:因为•1 -3•ו7 2且2-21=-19, 所以7x²-19x-6=(7x+2)(x-3).多项式因式分解的一般步骤>> 如果多项式的各项有公因式,那么先提公因式; 如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; 如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; 分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”【例题】1.分解因式(1+y)
7、2-2x2(1+y2)+x4(1-y)2.解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)=(1+y)+x2(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)=(1+y)+x2(1-y)2-(2x)2=(1+y)+x2(1-y)+2x(1+y)+x2(1-y)-2x=(x2-x2y+2x+y+1)(x2-x2y-2x+y+1)=(x+1)2-y(x2-1)(x-1)2-y(x2-1)=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).2.求证:对于任何实数x,y,下式的值都不会为33:x5+3x4y-5x
8、3y2-15x2y3+4xy4+12y5.解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y4)=(x+3y)(x2-4y2)(x2-y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。3.ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。解:此题
9、实质上是对关系式的等号左边的多项式进行因式分解。证明:-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.a、b、c是ABC的三条边,∴a+2b+c>0.∴a-c=0,即a=c,ABC为等腰三角形。4.把-12x2n×yn+18x(n+2)y(n+1)-6xn×y(n-1)分解因式。解:-12x2n×yn+18x(n+2)y(n+1)-6xn×y(n-1)=-6xn×y(n-1)(2xn×y-3x2y2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022版新高考语文一轮复习练习课件:对点练38 正确使用词语(包括熟语) .ppt
