数学北师大版必修4教学设计:1.4.1任意角的正弦、余弦函数4.2单位圆与周期性 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学北师大版必修4教学设计:1.4.1任意角的正弦、余弦函数4.2单位圆与周期性 WORD版含解析 数学 北师大 必修 教学 设计 1.4 任意 正弦 余弦 函数 4.2 单位 周期性 WORD 解析
- 资源描述:
-
1、教学设计4.1 任意角的正弦、余弦函数4.2 单位圆与周期性整体设计教学分析 从初中的锐角三角函数到高中的任意角的三角函数,是学生在三角函数认知结构上的一次质的变革.要使这次认知结构的变革在课堂上顺利完成,关键是抓住三角函数的定义,其媒介是从初中的直角三角形转化为高中的平面直角坐标系.因此,准确理解任意角的三角函数定义是极其重要的. 在初中,学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生
2、理解三角函数的概念,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题. 本节教材的安排是以锐角三角函数为引子.由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆.利用单位圆的独特性,是高中数学中的一种重要方法.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.在三角函数的研究中,数形结合思想起着非常重要的作用. 关于单位圆与周期性,教材上是根据在单位圆中,任意角的正弦、余弦函数定义得到
3、周期函数的特征,然后通过分析两个等式直接下了定义.这样定义对学生来说来得有些突然,且没有应用例子.这样的效果使学生仅仅知道了周期函数及最小正周期的定义而不会应用,而定义的应用在好多的代数试题中有所涉及.因此,本教案设计时加了一个例题和两个变式训练,难度不大,算是抛砖引玉.同时,周期性作为函数的重要性质之一,在备课资料中做了扩展,以供学生课余时间进一步探究时查询,为学生的进一步探究提供一个跳板.以上内容在设计时都遵循了由易到难,由特殊到一般,由具体到抽象的认知规律,以便于学生接受并培养学生灵活运用知识的能力. 利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联
4、系,并在角的变化过程中,将这种联系直观地体现出来.所以,教学时尽可能的利用信息技术,帮助学生更好地理解正弦、余弦函数的本质,激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神.通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学效果.三维目标 1.通过回忆初中锐角的正弦函数定义,理解通过单位圆引入任意角的正弦函数的意义,熟练记忆正弦、余弦函数值在各象限的符号;掌握周期函数的概念及最小正周期的意义.2.通过本节课的学习,使学生对正弦、余弦函数的概念有一个全新的认识,对本章第一节的周期现象有了具体的定量的分析;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与
5、一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学生的学习积极性,培养学生分析问题、解决问题的能力.重点难点 教学重点:任意角的正弦、余弦函数定义及正弦、余弦函数值在各象限的符号;周期函数、最小正周期. 教学难点:对任意角的正弦、余弦函数定义的深刻理解及周期函数的概念.课时安排 1课时教学过程导入新课 思路1.教科书在定义任意角的正弦、余弦函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数,引入弧度的概念后的三角函数的写法.因此教师可先让学生看教科书上的三角函数初中定义,回忆锐角三角函数概念,借助于直角三角形表示锐角三角函数的意义,从而为定义任意角的正弦、余弦
6、奠定基础并引入单位圆,由此展开新课. 思路2.设疑引入,我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180,那么sin200的值还是三角形中200的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.推进新课新知探究提出问题 复习初中锐角三角函数定义(多媒体投影)可问:sin=_,cos=_ 阅读课本,理解什么是单位圆. 将锐角放到直角坐标系中,其正弦、余弦函数又是怎样的呢? 类比初中三角函数的定义,利用单位圆可否把锐角三角函数推广到任意角的三角函数
7、呢? 当角的终边分别在第一、第二、第三、第四象限时,角的正弦、余弦函数值的正负号分别是什么?活动:我们学习角的概念的推广和弧度制,就是为了学习三角函数.教师与学生一起探究,在初中,我们学习了锐角的正弦函数值:sin.然后设问:把角放到平面直角坐标系中,我们来看看会是什么情况呢?如图1在直角坐标系中,以原点为圆心,以单位长为半径的圆,称为单位圆.给定一个锐角,使角的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),则点P的纵坐标v是角的正弦函数值,横坐标u是角的余弦函数值,即sinv,cosu.图1由图1可知,当0时,sin0=v=0,cos0=u=1;当时,sin=v=1,
8、cos=u=0.这样就得到定义在0,上的角的正弦函数v=sin和余弦函数ucos. 以上显然不能包含所有的角,但是,我们可以仿照锐角正弦函数的定义.你认为该如何定义任意角的正弦函数? 一般地,如图2所示,在直角坐标系中,给定单位圆,对于任意角,使角的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫作角的正弦函数,记作v=sin;点P的横坐标u叫作角的余弦函数,记作u=cos图2 通常,我们用x表示自变量,即x表示角的大小,用y表示函数值.这样,我们就定义了任意角的三角函数y=sinx和y=cosx.它们的定义域为全体实数,值域为-1,1. 利用课件出示
9、图3,教师引导学生观察,当角的终边分别在第一、第二、第三、第四象限时,角的正弦、余弦函数值的正负号的情况.教师要让学生自己思考探究,确切理解正弦、余弦函数值在各象限的符号情况,并指导学生记忆自己的探究所得.图3 正弦、余弦函数的定义告诉我们,三角函数在各象限内的符号,取决于u,v的符号.当点P在第一、二象限时,纵坐标y0;点P在第三、四象限时,纵坐标y0.所以,正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示).同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的,即“一全正,二正弦,三正切,四余弦”. 教师
10、指导学生将自己的思考探究结果先填入下表,然后再填入直角坐标系的各个象限中,以便于加强记忆,灵活运用.象限函数第一象限第二象限第三象限第四象限sincos 在指导学生思考探究过程中,教师应点拨学生注意一些问题:尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质,这也是数形结合的充分体现,思考时注意领悟. 教师还可以引导学生分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么?特别注意既表示一个角,又表示一个实数(弧度数).
11、“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.特别指出的是:正弦、余弦函数都是以角为自变量,以比值为函数值的函数,因此sin不是sin与的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“cos”是没有意义的.利用坐标平面内点的坐标的特征我们还可得到定义域,对于正弦函数sin=y,因为y恒有意义,即取任意实数,y恒有意义,也就是说sin恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域是R.讨论结果:略.提出问题观察图4,根据以上知识,在单位圆中,由任意角的正弦、余弦函数定义能得到哪些结论?怎样定义周期函数
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-532478.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
