云南省云南师大附中2021届高三数学适应性月考试题(二)理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 云南 师大附中 2021 届高三 数学 适应性 月考 试题 解析
- 资源描述:
-
1、云南省云南师大附中2021届高三数学适应性月考试题(二)理(含解析)一.选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,集合,则( )A. B. C. D. 【答案】D【解析】【分析】先求出集合A,再求交集.【详解】由题意知,所以,故选:D.【点睛】本题考查求分式不等式和集合求交集,属于基础题.2. 瑞士数学家欧拉在1748年得到复数的三角方程:(i为虚数单位),根据此公式可知,若,则的一个可能值为( )A. 0B. C. D. 【答案】C【解析】【分析】根据条件由可得,即且,可得答案.【详解】根据条件由则,所以且所以故选:C.
2、【点睛】本题考查复数的相等,考查新定义,属于基础题.3. ( )A. B. C. D. 【答案】C【解析】 由两角差的余弦函数,可得,故选4. 已知双曲线的方程为,双曲线右焦点F到双曲线渐近线的距离为( )A. 1B. C. D. 2【答案】C【解析】【分析】根据双曲线的方程求得右焦点的坐标和渐近线方程,结合点到直线的距离公式,即可求解.【详解】由题意知,双曲线的右焦点为,双曲线的渐近线方程为,即,所以点到渐近线的距离,故选:C.【点睛】本题主要考查了双曲线的标准方程及简单的几何性质,以及点到直线的距离公式的应用,着重考查了推理与计算能力,属于基础题.5. 我国古代数学名著增删算法统宗中有如下
3、问题:“一个公公九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期借问长儿多少岁,各儿岁数要详推”大致意思是:一个公公九个儿子,若问他们的生年是不知道的,但从老大的开始排列,后面儿子比前面儿子小3岁,九个儿子共207岁,问老大是多少岁? ( )A. 38B. 35C. 32D. 29【答案】B【解析】【分析】由题意,将九个儿子的年龄可以看成以老大的年龄为首项,公差为的等差数列,根据等差数列的求和公式列出方程,即可求出结果.【详解】由题意可知,九个儿子的年龄可以看成以老大的年龄为首项,公差为的等差数列,所以,解得,故选:B.【点睛】本题主要考查等差数列的简单应用,考查等差数列前项和公式的基本
4、量运算,属于基础题型.6. 为了更好地配合我市“文明城市”的创建工作,我校开展了”文明行为进班级”的评比活动,现对甲.乙两个年级进行评比,从甲.乙两个年级中随机选出10个班级进行评比打分,每个班级成绩满分为100分,评分后得到如图所示的茎叶图,通过基叶图比较甲、乙两个年级成绩的平均数及方差大小( )A. ,B. ,C. ,D. ,【答案】A【解析】【分析】由茎叶图中数据可分别计算求得平均数,根据数据分散程度可确定方差大小.【详解】,;由茎叶图可知,甲年级的成绩集中在多分,即集中在平均分附近,而乙年级的成绩比较分散,所以.故选:.【点睛】本题考查根据茎叶图比较平均数和方差的大小关系问题;比较方差
5、大小的关键是明确数据越集中,则方差越小,属于基础题.7. 若是以O为圆心,半径为1圆的直径,C为圆外一点,且.则( )A. 3B. C. 0D. 不确定,随着直径的变化而变化【答案】A【解析】【分析】将通过向量加法的三角形法则用表示出来即可.【详解】如图,故选:A.【点睛】本题考查向量的数量积的运算,关键是将用知道模的向量来表示,是基础题.8. 已知圆M的方程为,过点的直线l与圆M相交的所有弦中,弦长最短的弦为,弦长最长的弦为,则四边形的面积为( )A. 30B. 40C. 60D. 80【答案】B【解析】【分析】由题可知点在圆内,则最短的弦是以为中点的弦,过最长的弦为直径,求出后即可求出四边
6、形面积.【详解】圆M的标准方程为,即圆是以为圆心,5为半径的圆,且由,即点在圆内,则最短的弦是以为中点的弦,所以,所以,过最长的弦为直径,所以,且,故而.故选:B.【点睛】本题考查直线与圆的位置关系,考查弦长的计算,属于基础题.9. 正四面体的俯视图为边长为1的正方形,则正四面体的外接球的表面积为( )A B. C. D. 【答案】C【解析】【分析】根据题意,该正四面体可以看成边长为1的正方体六个面对角线组成的正四面体,则正四面体的外接球,即为边长为1的正方体的外接球,从而可求出球的半径,得出球的表面积.【详解】如图,该正四面体可以看成棱长为1的正方体六个面对角线组成的正四面体,所以正四面体的
7、外接球,即为边长为1的正方体的外接球,所以外接球的半径为,则该外接球的表面积为,故选:C.【点睛】本题主要考查求几何体外接球的表面积,属于常考题型.10. 已知,下列结论中错误的是( )A. 即是奇函数也是周期函数B. 的最大值为C. 的图象关于直线对称D. 的图象关于点中心对称【答案】B【解析】【分析】根据函数的奇偶性的定义及判定,可判定A是正确的;根据函数的对称性,可判定C、D是正确的;由,令,利用求导方法求函数的最值,即可判定B选项错误.【详解】由题意,函数的定义域为关于原点对称,又由,所以是奇函数;且,所以又是周期函数,所以A是正确的;由,即,所以关于直线对称,所以C是正确的;由,所以
8、关于点对称,所以D是正确的;由,令,令,的单调递减区间是,的单调递增区间是,的极大值为,所以的最大值为,即函数的最大值为,故B选项错误.故选:B【点睛】本题主要考查了三角函数的函数的基本性质的判定及应用,其中解答中熟记函数的周期性、对称性,以及三角函数的基本关系式和应用导数求最值是解答的关键,着重考查推理与运算能力.11. 已知抛物线C:,为的焦点,过焦点且倾斜角为的直线与交于、两点,则下面陈述不正确的为( )A. B. C. D. 记原点为,则【答案】D【解析】【分析】设,与抛物线方程联立得到韦达定理的形式,代入选项中进行整理可知正确;,知错误.【详解】设直线,由得:,故正确;当时,当时,经
9、检验亦成立,故正确;,故正确;当时,,当时,经检验亦成立,故错误.故选:.【点睛】本题考查直线与抛物线的综合应用问题,涉及到抛物线焦半径公式的应用、抛物线中三角形面积问题的求解等知识;本题中的各个选项属于抛物线问题中与过焦点的直线有关的常用结论,熟记结论可减少计算证明时间.12. 下列四个命题:,其中真命题为( )A. 个B. 个C. 个D. 个【答案】B【解析】【分析】利用对数的运算和性质比较即可,构造函数,求导根据函数的单调性可判断的正误.【详解】由,故正确;由,考察函数,所以当时,即函数在上单调递增,所以,故错误;令,所以,所以,即,故正确;由,所以,由,所以,即,故错误,故选:B.【点
10、睛】本题考查对数的运算和对数的性质的应用,考查分析推理能力和计算能力,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分)13. 若x,y满足约束条件,则的最大值为_【答案】【解析】【分析】先由约束条件,画出可行域,根据表示平面区域内的点与坐标原点的连线斜率,结合图形,即可得出结果.【详解】画出约束条件所表示的平面区域如下,由表示平面区域中的点与原点的连线斜率,由图像可得,的斜率即为的最大值,由,解得则的最大值为.故答案为:.【点睛】本题主要考查求分式型目标函数的最值,利用数形结合的方法求解即可,属于基础题型.14. 二项式展开式的二项式系数之和为64,则二项式展开式中的常数项为_【
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021部编版语文六年级上册阅读能力抽测卷.pdf
