数学必修四人教A版 1-1-2弧度制(教、学案) .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学必修四人教A版 1-1-2弧度制教、学案 数学 必修 四人教 弧度
- 资源描述:
-
1、1. 1.2 弧度制 【教学目标】 了解弧度制,能进行弧度与角度的换算. 认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题. 【教学重难点】 重点:了解弧度制,并能进行弧度与角度的换算. 难点:弧度的概念及其与角度的关系. 【教学过程】(一)复习引入. 复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系 提出问题:初中的角是如何度量的?度量单位是什么? 1的角是如何定义的?弧长公式是什么? 角的范围是什么?如何分类的?(二)概念形成 初中学习中我们知道角的度量
2、单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?1自学课本第7、8页.通过自学回答以下问题:(1)角的弧度制是如何引入的? (2)为什么要引入弧度制?好处是什么? (3)弧度是如何定义的? (4)角度制与弧度制的区别与联系?2学生动手画图来探究:(1)平角、周角的弧度数 (2)角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关? (3)角的弧度与角所在圆的半径、角所对的弧长有何关系?3角度制与弧度制如何换算? rad 1=归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是: 一些特殊角的度数与弧度数的互相转化,请补充完整3090120150270
3、0例1、把下列各角从度化为弧度:(1) (2) (3) (4)解:(1) (2) (3) (4) 变式练习:把下列各角从度化为弧度: (1)22 30 (2)210 (3)1200 解:(1) (2) (3) 例2、把下列各角从弧度化为度:(1) (2) 3.5 (3) 2 (4)解:(1)108 (2)200.5 (3)114.6 (4)45 变式练习:把下列各角从弧度化为度: (1) (2) (3) 解:(1)15 (2)-240 (3)54 正角零角负角正实数零负实数弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.弧度下的弧长公式和扇形面积公式弧长
4、公式:因为(其中表示所对的弧长),所以,弧长公式为扇形面积公式:说明:以上公式中的必须为弧度单位 例3、知扇形的周长为8,圆心角为2rad,求该扇形的面积。解:因为2R+2R=8,所以R=2,S=4变式练习:1、半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数。答案:2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的2 倍。3、若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是 4cm2 4、以原点为圆心,半径为的圆中,一条弦的长度为,所对的圆心角的弧度数为 (三) 课堂小结:1、弧度制的定义;2、弧度制与角度制的转换与区别;3、牢记弧度制下的弧长公
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
