数学思想方法难点归纳--函数方程思想.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 思想 方法 难点 归纳 函数 方程
- 资源描述:
-
1、高考资源网提供高考试题、高考模拟题,发布高考信息题本站投稿专用信箱:ks5u,来信请注明投稿,一经采纳,待遇从优函数方程思想重难点归纳 函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化 考生应做到 (1)深刻理解一般函数y=f(x)、y=f1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础 (2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略
2、典型题例示范讲解 例1已知函数f(x)=logm(1)若f(x)的定义域为,(0),判断f(x)在定义域上的增减性,并加以说明;(2)当0m1时,使f(x)的值域为logmm(1),logmm(1)的定义域区间为,(0)是否存在?请说明理由 命题意图 本题重在考查函数的性质,方程思想的应用 知识依托 函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组 错解分析 第(1)问中考生易忽视“3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根 技巧与方法 本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题 解 (1)x3或x3 f(x)定义域为
3、,3设x1x2,有当0m1时,f(x)为减函数,当m1时,f(x)为增函数 (2)若f(x)在,上的值域为logmm(1),logmm(1)0m1, f(x)为减函数 即即,为方程mx2+(2m1)x3(m1)=0的大于3的两个根 0m故当0m时,满足题意条件的m存在 例2已知函数f(x)=x2(m+1)x+m(mR)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角 求证 m5;(2)对任意实数,恒有f(2+cos)0,证明m3;(3)在(2)的条件下,若函数f(sin)的最大值是8,求m 命题意图 本题考查函数、方程与三角函数的相互应用;不等式法
4、求参数的范围 知识依托 一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式 错解分析 第(1)问中易漏掉0和tan(A+B)0,第(2)问中如何保证f(x)在1,3恒小于等于零为关键 技巧与方法 深挖题意,做到题意条件都明确,隐性条件注意列 列式要周到,不遗漏 (1)证明 f(x)+4=0即x2(m+1)x+m+4=0 依题意 又A、B锐角为三角形内两内角A+Btan(A+B)0,即m5(2)证明 f(x)=(x1)(xm)又1cos1,12+cos3,恒有f(2+cos)0即1x3时,恒有f(x)0即(x1)(xm)0mx但xmax=3,mxmax=3(3)解 f(sin)=s
5、in2(m+1)sin+m=且2,当sin=1时,f(sin)有最大值8 即1+(m+1)+m=8,m=3例3关于x的不等式232x3x+a2a30,当0x1时恒成立,则实数a的取值范围为 解析 设t=3x,则t1,3,原不等式可化为a2a32t2+t,t1,3 等价于a2a3大于f(t)=2t2+t在1,3上的最大值 答案 (,1)(2,+)例4对于函数f(x),若存在x0R,使f(x0)=x0成立,则称x0为f(x)的不动点 已知函数f(x)=ax2+(b+1)x+(b1)(a0)(1)若a=1,b=2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取
6、值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+对称,求b的最小值 解 (1)当a=1,b=2时,f(x)=x2x3,由题意可知x=x2x3,得x1=1,x2=3 故当a=1,b=2时,f(x)的两个不动点为1,3 (2)f(x)=ax2+(b+1)x+(b1)(a0)恒有两个不动点,x=ax2+(b+1)x+(b1),即ax2+bx+(b1)=0恒有两相异实根=b24ab+4a0(bR)恒成立 于是=(4a)216a0解得0a1故当bR,f(x)恒有两个相异的不动点时,0a1 (3)由题意A、B两点应在直线y=x上,设A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
