数学百大经典例题——棱锥(新课标).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 经典 例题 棱锥 新课
- 资源描述:
-
1、典型例题一例1 正六棱锥的底面周长为24,侧面与底面所成角为,求:(1)棱锥的高;(2)斜高;(3)侧棱长;(4)侧棱与底面所成角分析:本题涉及了正棱锥的若干基本量,可以把基本量放置到直角三角形中,由已知量求未知量解:正六棱锥的底面周长为24正六棱锥的底面边长为4在正棱锥中,取中点,连,是正六边形的中心连,则底面是侧面与底面所成二面角的平面角,即(1)在中,(2)同样在中,斜高,(3)中,(4)底面,是侧棱与底面所成角,同样在中,说明:在立体几何中,要善于把长度和角度放到三角形中去解决,正棱锥中有关长度、角度主要在两上重要的直角三角形中,本题中的方法也可用于其它正棱锥中比如:已知正四棱锥底面边
2、长为,相邻两侧面所成二面角为,求正棱锥的高、斜高、侧棱长正四棱锥相邻侧面是全等的等腰三角形,利用这个性质先落实相邻侧面所成二面的平面角,先计算侧棱长为,然后利用底面边长和侧棱长在两个重要的直角三角形中,计算出高为,斜高为典型例题二例2 如图所示,正四棱锥棱长均为13,分别是,上的点,且(1)求证:直线平面;(2)求直线与底面所成角的正弦分析:(1)要证明平面,只需证明与平面内某一条直线平行为此连并延长交于,连可考虑证明(2)若能证明,则即为直线与底面所成的角解:(1)连并延长交于,再连,又,又平面,平面,平面(2)设为底面中心,连,则平面又,则为直线与平面所成的角由及,得,在中,由余弦定理,得
3、在中,则说明:本题(2)若直接求与平面所成的角,计算就比较复杂,而平移为求与底面所成的角,计算就易得多可见,平移是求线线、线面所成角的重要方法典型例题三例3 斜三棱柱的底面是直角三角形,侧棱与底面成角,点在底面的射影为的中点,(1)求证;(2)若为的二面角,求四棱锥的体积分析:证关键在于证出其中一条线垂直于另一条线所在的平面;而求棱锥的体积关键在于求出其底面积和高这两个问题可由题设及线与线、线与面的位置关系求得解:如图所示,(1)平面,底面,平面,在底面上的射影为的中点,侧棱与底面成角,四边形是菱形,平面,(2)过作,连结平面,是在平面上的射影,是二面角的平面角,在中,在中,由可得, (体积单
4、位)说明:证明线线垂直转化成证线面垂直是证明时常用的方法之一,而证线面垂直时又涉及线与线的垂直,因此线与面各种位置关系经常贯穿问题的始终当遇到一线垂直于一截面,而截面面积又能计算时,将几何体分割成两个体积之和计算也是一种常用的方法结果便转化成截面与此线相乘的关系,因而使问题得到简化典型例题四例4如图,在三棱锥中,底面,、分别是和的中点,为上一点,且,(1)求证:平面;(2)求截面分棱锥所成两部分的体积之比分析:由底面,可以判定平面平面,且相交于,因为是的中点,且,所以,于是有平面,若证平面,只需与平面中的另一条直线垂直就可以了为此,就要从已知的数量关系着手,找到新的线与线的垂直关系平面把三棱锥
5、分成两部分,显然这两部分具有相同的高线所以,只要找到和四边形的面积之比,就可以确定两部分的体积之比了证明:(1)平面,且平面平面平面,且相交于在中,是边上的中线平面平面,利用两个平面垂直的性质定理可以证明平面在和中设,则,利用相似三角形的性质,得到,平面解:(2),截面分棱锥为两部分,三棱锥与四棱锥的体积之比为1:2典型例题五例5四棱锥,侧面是边长为2的正三角形且与底面垂直,底面是面积为的菱形,为菱形的锐角(1)求证:;(2)求二面角的大小;(3)求棱锥的侧面积与体积分析:取中点,侧面底面,从而可利用三垂线定理转化为证明,线面垂直也为二面角平面角的落实创造了有利条件,棱锥的侧面积可通过抓侧面三
6、角形的特殊性来解决证明:(1)取中点,连、,是等边三角形,面底面,底面,等边的边长为2,菱形的边长为2,又菱形的面积是,又是锐角,是等边三角形,在平面上射影为,解:(2),由(1),是二面角的平面角,在中,即二面角的大小为(3)由(2)在中,可得,在中,在中,可得,在中,可得,又正边长为2,说明:抓线面垂直关系是解决立体几何问题的关键,非特殊棱柱、棱锥的侧面积,往往要通过逐个计算每个侧面的面积相加而得到,这就需要分析每个侧面的具体特点,比如是否为矩形、直角三角形、等边三角形等可以举一个类似的例子,四棱锥的高为1,底面为菱形,侧面和侧面所成角为,且都垂直于底面,另两侧面与底面都成角,求棱锥的全面
7、积这里由相交平面与都与底面垂直得到垂直于底面,利用底面,一方面落实了棱锥的高为,另一方面几个二面角的平面角都能方便地落实,四个侧面中,有两个是等腰三角形,有两个是直角三角形,通过计算可得,全面积为典型例题六例6 已知三棱锥中,、与底面所成角相等,为中点,点在上且截面,(1)求与底面所成角;(2)求到平面的距离分析:由、与底面所成角相等可得点在面上射影为的外心,由于是直角三角形,可以得到面,面可转化为,是中点,找出到面的垂线落实与面所成角到面的距离可从两方面得到,一方面直接找到面的垂线,另一方面,用等积法可求点到面的距离解:(1)、与底面成相等的角,设在面上射影为,则有,且,是的外心是直角三角形
8、,且是斜边的中点,点和点重合,即面,截面,过的平面与平面交于,是中点,是中点,取中点,则,平面,为与底面所成角,且,又,也是等腰直角三角形,在中,即与平面所成角为(2)方法一:平面,又,平面,由(1)是直角三角形,平面,即到平面的距离为方法二:,平面,又,设到面的距离为,即到平面的距离为典型例题七例7如图所示,在三棱锥中,底面,垂直平分,且分别交、于、,又,求以为棱,以和为面的二面角的度数分析:从寻找二面角的平面角入手二面角的平面角有时图形中没有给出,需要我们自己作出,有时平面角在图形中已经存在,只需要将其找出来解:平面,平面,是的垂直平分线,且是的中点又,又,平面,又,平面,从而为二面角的平
9、面角设,则平面,从而又,在中,又,因此所求的二面角的度数为说明:本题是通过三棱锥来考查直线与直线、直线与平面、二面角、解三角形等知识,并考查了空间想像能力和逻辑推理能力解答本题的关键是认定是二面角的平面角这需要具有一定的观察能力和判断能力,而且要给出严格的证明学生很可能发现不了即是所求二面角的平面角,自己再作二面角的平面角,使问题复杂化本题所给条件较多,所以恰当地选择所需条件进行论证和计算也是解决本题的一个难点典型例题八例8是所在平面外的一点,、两两垂直,求到平面的距离分析:利用三棱锥的性质、体积以及线面关系求解解法一:,在底面内的射影是的外心又、两两相互垂直,是等边三角形,是的重心如图,在中
10、,解法二:设点到平面的距离为、两两垂直,又,到平面的距离为解法三:取的中点,连、,平面,平面,就是到平面的距离在中,又,说明:本题难度并不大但是这里所给出的三种方法非常典型方法一利用确定在底面内射影为的外心;方法二利用体积转化的方法;方法三利用面面垂直的性质定理进行垂足定位典型例题九例9如图所示,在三棱锥中,底面为直角三角形,两直角边,三棱锥侧面与底面所成二面角都为求此三棱锥的侧面积分析:本题可利用面积射影定理求解若一棱锥各侧面与底面所成二面角都为,且已知,则由面积射影定理知:解法一:过作底面的垂线,垂足为,过在底面内作的垂线,垂足为,连结由三垂线定理知,为侧面与底面所成二面角的平面角,即又可
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
