分享
分享赚钱 收藏 举报 版权申诉 / 13

类型数学竞赛平面几何讲座:三角形的五心.doc

  • 上传人:a****
  • 文档编号:536369
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:13
  • 大小:27.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 竞赛 平面几何 讲座 三角形
    资源描述:

    1、数学竞赛平面几何讲座:三角形的五心以下是查字典数学网为您推荐的 数学竞赛平面几何讲座:三角形的五心,希望本篇文章对您学习有所帮助。数学竞赛平面几何讲座:三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰ABC底边BC上一点P引PMCA交AB于M;引PNBA交AC于N.作点P关于MN的对称点P.试证:P点在ABC外接圆上.分析:由已知可得MP=MP=MB,NP=NP=NC,故点M是PBP的外心,点N是PPC的外心.有BPP= BMP= BAC,PPC= PNC= BAC.BPC=BP

    2、P+PPC=BAC.从而,P点与A,B,C共圆、即P在ABC外接圆上.由于PP平分BPC,显然还有PB:PC=BP:PC.例2.在ABC的边AB,BC,CA上分别取点P,Q,S.证明以APS,BQP,CSQ的外心为顶点的三角形与ABC相似.分析:设O1,O2,O3是APS,BQP,CSQ的外心,作出六边形O1PO2QO3S后再由外心性质可知PO1S=2A,QO2P=2B,SO3Q=2C.PO1S+QO2P+SO3Q=360.从而又知O1PO2+O2QO3+O3SO1=360将O2QO3绕着O3点旋转到KSO3,易判断KSO1O2PO1,同时可得O1O2O3O1KO3.O2O1O3=KO1O3=

    3、 O2O1K= (O2O1S+SO1K)= (O2O1S+PO1O2)= PO1S=同理有O1O2O3=B.故O1O2O3ABC.二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.例3.AD,BE,CF是ABC的三条中线,P是任意一点.证明:在PAD,PBE,PCF中,其中一个面积等于另外两个面积的和.分析:设G为ABC重心,直线PG与AB,BC相交.从A,C,D,E,F分别作该直线的垂线,垂足为A,C,D,E,F.易证AA=2DD,CC=2FF,2EE=AA+CC,EE=DD+FF.有SPGE=SPGD+SPGF.两边各扩大3倍,有S

    4、PBE=SPAD+SPCF.例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将ABC简记为,由三中线AD,BE,CF围成的三角形简记为.G为重心,连DE到H,使EH=DE,连HC,HF,则就是HCF.(1)a2,b2,c2成等差数列 .若ABC为正三角形,易证.不妨设ac,有CF= ,BE= ,AD= .将a2+c2=2b2,分别代入以上三式,得CF= ,BE= ,AD= .CF:BE:AD = : :=a:b:c.故有.(2) a2,b2,c2成等差数列.当中ac时,中CFAD.=( )2.据三角形的三条中线围成的新三角形面积等于原三角形

    5、面积的 ,有 = .= 3a2=4CF2=2a2+b2-c2a2+c2=2b2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A1A2A3A4为O内接四边形,H1,H2,H3,H4依次为A2A3A4,A3A4A1,A4A1A2,A1A2A3的垂心.求证:H1,H2,H3,H4四点共圆,并确定出该圆的圆心位置.分析:连接A2H1,A1H2,H1H2,记圆半径为R.由A2A3A4知=2R A2H1=2Rcos由A1A3A4得A1H2=2RcosA3A1A4.但A3A2A4=A3A1A4,故A2H1=A1H2.易证A2H

    6、1A1A2,于是,A2H1 A1H2,故得H1H2 A2A1.设H1A1与H2A2的交点为M,故H1H2与A1A2关于M点成中心对称.同理,H2H3与A2A3,H3H4与A3A4,H4H1与A4A1都关于M点成中心对称.故四边形H1H2H3H4与四边形A1A2A3A4关于M点成中心对称,两者是全等四边形,H1,H2,H3,H4在同一个圆上.后者的圆心设为Q,Q与O也关于M成中心对称.由O,M两点,Q点就不难确定了.例6.H为ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2.求证:AA1=AA2=BB1=BB2=C

    7、C1=CC2.分析:只须证明AA1=BB1=CC1即可.设BC=a, CA=b,AB=c,ABC外接圆半径为R,H的半径为r.连HA1,AH交EF于M.A =AM2+A1M2=AM2+r2-MH2=r2+(AM2-MH2), 又AM2-HM2=( AH1)2-(AH- AH1)2=AHAH1-AH2=AH2AB-AH2=cosAbc-AH2, 而 =2R AH2=4R2cos2A,=2R a2=4R2sin2A.AH2+a2=4R2,AH2=4R2-a2. 由、有A =r2+ bc-(4R2-a2)= (a2+b2+c2)-4R2+r2.同理, = (a2+b2+c2)-4R2+r2,= (a

    8、2+b2+c2)-4R2+r2.故有AA1=BB1=CC1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I为ABC的内心,射线AI交ABC外接圆于A,则有A I=AB=AC.换言之,点A必是IBC之外心(内心的等量关系之逆同样有用).例7.ABCD为圆内接凸四边形,取DAB,ABC,BCD,CDA的内心O1, O2,O3,O4.求证:O1O2O3O4为矩形.(1986,中国数学奥林匹克集训题)证明见中等数学1992;4例8.已知O内接ABC,Q切AB,AC于E,F且与O内切.试证:EF中点P是ABC之内心.分析:在第20届IMO中,美

    9、国提供的一道题实际上是例8的一种特例,但它增加了条件AB=AC.当ABAC,怎样证明呢?如图,显然EF中点P、圆心Q,BC中点K都在BAC平分线上.易知AQ= .QKAQ=MQQN,QK=由RtEPQ知PQ= .PK=PQ+QK= + = .PK=BK.利用内心等量关系之逆定理,即知P是ABC这内心.五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r+ra+rb+rc=2p.式中r,ra,rb,rc分别表示内切圆半径及与a,b,c相切的旁切圆半径,p表示半周.分析:

    10、设RtABC中,c为斜边,先来证明一个特性:p(p-c)=(p-a)(p-b).p(p-c)= (a+b+c) (a+b-c)= (a+b)2-c2= ab;(p-a)(p-b)= (-a+b+c) (a-b+c)= c2-(a-b)2= ab.p(p-c)=(p-a)(p-b). 观察图形,可得ra=AF-AC=p-b,rb=BG-BC=p-a,rc=CK=p.而r= (a+b-c)=p-c.r+ra+rb+rc=(p-c)+(p-b)+(p-a)+p=4p-(a+b+c)=2p.由及图形易证.例10.M是ABC边AB上的任意一点.r1,r2,r分别是AMC,BMC,ABC内切圆的半径,q1

    11、,q2,q分别是上述三角形在ACB内部的旁切圆半径.证明: = .(IMO-12)分析:对任意ABC,由正弦定理可知OD=OA=AB=AB ,OE= AB .亦即有六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE中,AB=BC,CD=DE,EF=FA.试证:(1)AD,BE,CF三条对角线交于一点;(2)AB+BC+CD+DE+EF+FAAK+BE+CF.分析:连接AC,CE,EA,由已知可证AD,CF,EB是ACE的三条内角平分线,I为ACE的内心.从而有ID=CD=DE,IF=EF=FA,IB=A

    12、B=BC.再由BDF,易证BP,DQ,FS是它的三条高,I是它的垂心,利用 不等式有:BI+DI+FI(IP+IQ+IS).不难证明IE=2IP,IA=2IQ,IC=2IS.BI+DI+FIIA+IE+IC.AB+BC+CD+DE+EF+FA=2(BI+DI+FI)(IA+IE+IC)+(BI+DI+FI)=AD+BE+CF.I就是一点两心.例12.ABC的外心为O,AB=AC,D是AB中点,E是ACD的重心.证明OE丄CD.分析:设AM为高亦为中线,取AC中点F,E必在DF上且DE:EF=2:1.设CD交AM于G,G必为ABC重心.连GE,MF,MF交DC于K.易证:DG:GK= DC:(

    13、)DC=2:1.DG:GK=DE:EF GEMF.OD丄AB,MFAB,OD丄MF OD丄GE.但OG丄DE G又是ODE之垂心.易证OE丄CD.例13.ABC中C=30,O是外心,I是内心,边AC上的D点与边BC上的E点使得AD=BE=AB.求证:OI丄DE,OI=DE.分析:辅助线如图所示,作DAO平分线交BC于K.易证AIDAIBEIB,AID=AIB=EIB.利用内心张角公式,有AIB=90C=105,DIE=360-1053=45.AKB=30DAO=30+ (BAC-BAO)=30+ (BAC-60)= BAC=BAI=BEI.AKIE.由等腰AOD可知DO丄AK,DO丄IE,即D

    14、F是DIE的一条高.同理EO是DIE之垂心,OI丄DE.由DIE=IDO,易知OI=DE.例14.锐角ABC中,O,G,H分别是外心、重心、垂心.设外心到三边距离和为d外,重心到三边距离和为d重,垂心到三边距离和为d垂.求证:1d垂+2d外=3d重.分析:这里用三角法.设ABC外接圆半径为1,三个内角记为A,B,C. 易知d外=OO1+OO2+OO3=cosA+cosB+cosC,2d外=2(cosA+cosB+cosC). AH1=sinBAB=sinB(2sinC)=2sinBsinC,同样可得BH2CH3.3d重=ABC三条高的和=2(sinBsinC+sinCsinA+sinAsinB

    15、) =2,HH1=cosCBH=2cosBcosC.同样可得HH2,HH3.d垂=HH1+HH2+HH3=2(cosBcosC+cosCcosA+cosAcosB) 欲证结论,观察、,须证(cosBcosC+cosCcosA+cosAcosB)+( cosA+ cosB+ cosC)=sinBsinC+sinCsinA+sinAsinB.即可.练 习 题1.I为ABC之内心,射线AI,BI,CI交ABC外接圆于A,B,C .则AA+BB+CCABC周长.2.T的三边分别等于T的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.3.I为ABC的内心.取IBC,ICA,IAB的外心O1,O

    16、2,O3.求证:O1O2O3与ABC有公共的外心.(4.AD为ABC内角平分线.取ABC,ABD,ADC的外心O,O1,O2.则OO1O2是等腰三角形.5.ABC中90,从AB上M点作CA,CB的垂线MP,MQ.H是CPQ的垂心.当M是AB上动点时,求H的轨迹.(IMO-7)6.ABC的边BC= (AB+AC),取AB,AC中点M,N,G为重心,I为内心.试证:过A,M,N三点的圆与直线GI相切.7.锐角ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作ABC.8.已知ABC的三个旁心为I1,I2,I3.求证:I1I2I3是锐角三角形.单靠“死”记还不行,还得“活

    17、”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。9.AB,AC切O于B,C,过OA与BC的交点M任作O的弦EF.求证:(1)AEF与ABC有公共的内心;(2)AEF与ABC有一个旁心重合语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

    18、现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。查字典数学网“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从

    19、最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学竞赛平面几何讲座:三角形的五心.doc
    链接地址:https://www.ketangku.com/wenku/file-536369.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1