数学:苏教版必修五学案:第7课时 正、余弦定理的应用(1).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学:苏教版必修五学案:第7课时 正、余弦定理的应用1 数学 苏教版 必修 五学案 课时 余弦 定理 应用
- 资源描述:
-
1、高考资源网() 您身边的高考专家1.3 正、余弦定理的应用第1课时【学习导航】 知识网络 学习要求 1 综合运用正弦定理、余弦定理等知识和方 法解决与测量学、航海等有关的实际问题2 分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念3 将实际问题转化为解三角形问题【课堂互动】自学评价1正弦定理、余弦定理及其变形形式,(1)正弦定理、三角形面积公式:_;(2)正弦定理的变形:;(3)余弦定理:1)_变形:2)_2运用正弦定理、余弦定理解决实际问题的基本步骤是:分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形
2、中,建立一个解斜三角形的数学模型;求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解;检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。【精典范例】听课随笔【例1】为了测量河对岸两点之间的距离,在河岸这边取点,测得,.设在同一平面内,试求之间的距离(精确到). 【解】【例2】某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在处获悉后,测出该渔轮在方位角为,距离为的处,并测得渔轮正沿方位角为的方向,以的速度向小岛B靠拢,我海军舰艇立即以的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到,时间精确到).【解】【例3】某海岛上一观察哨在上午时测得一轮船在海岛北偏东的处,
3、时分测得轮船在海岛北偏西的处,时分轮船到达海岛正西方的港口.如果轮船始终匀速前进,求船速.【解】追踪训练一1 曲柄连杆机构示意图如图所示当曲柄在水平位置时,连杆端点在的位置当自按顺时针方向旋转角时,和之间的距离是x已知,根据下列条件,求的值(精确到):();().2如图,货轮在海上以的速度由向航行,航行的方位角,处有灯塔,其方位角,在处观察灯塔的方位角,由到需航行,求到灯塔的距离3.如图,某人在高出海面的山上处,测得海面上的航标在正东,俯角为,航标在南偏东,俯角为,求这两个航标间的距离【选修延伸】听课随笔【例4】ABC中有两个角分别为300和450, ,求ABC的面积。【解】追踪训练二1在ABC中,已知A=,且,则C的值为( )A 4 B 9 C 4或9 D 无解2有一广告气球,直径为6m,放在公司大楼的上空,当行人仰望气球中心的仰角为300时,测得气球的视角,若很小时可取,则估算该气球离地高度为( )A 72 m B 86 m C 102 m D 118 m3在锐角三角形ABC中,则边的取值范围是 ( )A B C D 4在ABC中,若,则B= _ .【师生互动】学生质疑教师释疑.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u 版权所有高考资源网
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
