河北省衡水中学2020届高三数学下学期第二次调研试题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省衡水中学2020届高三数学下学期第二次调研试题 理含解析 河北省 衡水 中学 2020 届高三 数学 下学 第二次 调研 试题 解析
- 资源描述:
-
1、河北省衡水中学2020届高三数学下学期第二次调研试题 理(含解析)一、选择题1.已知集合,集合,则的子集个数为( )A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:由,解得,所以,所以,所以的子集个数为,故选C考点:1、不等式的解法;2、集合的交集运算;3、集合的子集2.如图,复平面上的点到原点的距离都相等,若复数所对应的点为,则复数(是虚数单位)的共轭复数所对应的点为( )A. B. C. D. 【答案】B【解析】试题分析:为将复数所对应的点逆时针旋转得,选B.考点:复数几何意义【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其
2、运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、共轭为3.下列四个函数,在处取得极值的函数是( ) A. B. C. D. 【答案】B【解析】【详解】试题分析:能不能取得极值要看函数在这个导函数的零点处的两边是否异性单调通过检验这两个函数在处的左右两边情况是:左边是减函数,右边是增函数,因此是极值点而两个函数都是单增的,所以应选B考点:函数极值的定义4.已知变量满足:,则的最大值为( )A. B. C. 2D. 4【答案】D【解析】试题分析:作出满足不等式组的平面区域,如图所示,由图知目标函数经过点时取得最大值,所以,故选D考点:简单的线性规划问题5.执行如
3、图所示的程序框图,输出的结果是( )A. 5B. 6C. 7D. 8【答案】B【解析】【分析】按照流程图运行到第五次循环后停止循环,由此可得答案.【详解】,第一次循环: ,第二次循环:,第三次循环:,第四次循环:,第五次循环:,停止循环,输出.故选:B.【点睛】本题考查了循环结构流程图和条件结构流程图,属于基础题.6.两个等差数列的前项和之比为,则它们的第7项之比为( )A. 2B. 3C. D. 【答案】B【解析】试题分析:设这两个数列的前项和分别为,则,故选B考点:1、等差数列的前项和;2、等差数列的性质7.在某次数学测试中,学生成绩服从正态分布,若在内的概率为,则在内的概率为( )A.
4、0.05B. 0.1C. 0.15D. 0.2【答案】B【解析】试题分析:由题意知服从正态分布,则由正态分布图象的对称性可知,故选B考点:正态分布8.函数的部分图象如图所示,的值为( )A. 0B. C. D. 【答案】A【解析】试题分析:由函数的图象可得:,解得,可得函数的解析式为,所以,观察规律可知函数的值以为周期,且,由于,故可得,故选A.考点:三角函数的周期性.【方法点晴】本题主要考查了三角函数部分图象确定函数的解析式、数列的周期性、数列的求和扥知识点的综合应用,其中根据三角函数的图象,求出函数的解析式,进而分析出函数的性质和数列的周期性,进而求解数列的和是解答本题的关键,着重考查了学
5、生分析和解答问题的能力及转化与化归思想的应用.9.若,则的值是( )A. -2B. -3C. 125D. -131【答案】C【解析】试题分析:令,得;令,得,即又,所以,故选C考点:二项式定理10.已知圆:,圆:,是椭圆:的半焦距,若圆,都在椭圆内,则椭圆离心率的范围是( )A. B. C. D. 【答案】B【解析】【分析】首先求出两圆的圆心和半径,可得两圆的位置关系.则问题等价于圆上的点都在椭圆的内部,列不等式组,即可求出椭圆离心率的范围.【详解】把圆:,圆:化为标准式得,圆,圆,则圆和圆关于原点对称.圆,都在椭圆内等价于圆上的点都在椭圆的内部,解得,即.故选:.【点睛】本题考查圆与椭圆的位
6、置关系,根据图形找出临界值,列出关于的不等式组即可求解.11.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值范围是( )A. B. C. D. 【答案】D【解析】试题分析:由已知条件知函数为奇函数且在上为减函数,由有,所以,,若以为横坐标,为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式表示的平面区域,即及其内部,令,则,求出,所以,解得,的取值范围是,选D.考点:1.函数的基本性质;2.线性规划.【方法点睛】本题主要考查了函数的性质:单调性和奇偶性,以及线性规划的相关知识,属于中档题. 利用已知条件得出函数是上的减函数,由函数的图象关于成中心对称,
7、根据图象的平移,得出的图象关于原点成中心对称,所以为奇函数,解不等式,得出,画出不等式组表示的平面区域,则,通过图形求关于的一次函数的斜率得出的范围,从而求出的范围.12.正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为( )A. B. C. D. 【答案】C【解析】分析:三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点
8、到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球表面积为:.故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.二、填空题(本大题共4小题,每小题5分,共20分)13.一个几何体的三视图如图所示,该几何体体积为_【答案】【解析】该几何体可以看作是一个四棱锥,四棱锥底面是边长为2的正方形,高为,因此体积为14.已知向量与的夹角为,且,若且,则实数的值为_【答案】1【解析】试题分析:因为,所以,解得考
9、点:1、向量的数量积运算;2、向量的线性运算15.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为_【答案】【解析】试题分析:由题意,得抛物线的准线为,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为,所以,即,所以,整理,得,解得或又过焦点且斜率为1的直线与双曲线的右支交于两点,所以考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关
10、于的等式,求取值范围问题就是建立关于的不等式16.用表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,10的因数有1,2,5,10,那么_【答案】【解析】由题意得 所以三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.在锐角中,角所对的边分别为,已知,(1)求角的大小;(2)求的面积【答案】(1);(2)【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.
11、(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以面积.考点:1、正余弦定理;2、三角形面积公式18.某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
