2019年高考理科数学二轮专题复习讲义:专题四 第一讲 空间几何体 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年高考理科数学二轮专题复习讲义:专题四 第一讲空间几何体 WORD版含答案 2019 年高 理科 数学 二轮 专题 复习 讲义 第一 空间 几何体 WORD 答案
- 资源描述:
-
1、第一讲空间几何体年份卷别考查角度及命题位置命题分析2018卷圆柱的三视图的应用T7立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,保持“一小一大”或“两小一大”的格局多以选择题或者填空题的形式考查空间几何体三视图的识别,空间几何体的体积或表面积的计算.卷与数学文化有关的三视图判断T32017卷三视图与表面积问题T7卷三视图与体积问题T4卷圆柱与球的结合体问题T82016卷有关球的三视图及表面积T6卷空间几何体的三视图及组合体表面积的计算T6卷空间几何体三视图及表面积的计算T9直三棱柱的体积最值问题T10空间几何体的三视图授课提示:对应学生用书第34页悟通方法结论一个
2、物体的三视图的排列规则俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样,即“长对正、高平齐、宽相等”全练快速解答1(2018高考全国卷)中国古建筑借助榫卯将木构件连接起来构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.故选A.答案:A2(2017高考全国卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的
3、边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10 B12 C14 D16解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,且这两个梯形全等,这些梯形的面积之和为212,故选B.答案:B3(2018山西八校联考)将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为()解析:将图2中的几何体放到正方体中如图所示,从侧视图的视线方向观察,易
4、知该几何体的侧视图为选项D中的图形,故选D.答案:D明确三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,看不到的部分用虚线表示(2)由几何体的部分视图画出剩余的视图先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图空间几何体的表面积与体积授课提示:对应学生用书第35页悟通方法结论求解几何体的表面积或体积(
5、1)对于规则几何体,可直接利用公式计算(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用全练快速解答1(2017高考全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90B63C42D36解析:法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V321032663.法二:由题意知,该几何体由底面半径为3,高为
6、10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V32763.答案:B2(2018福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为()AB27C27D27解析:在长、宽、高分别为3,3,3的长方体中,由几何体的三视图得几何体为如图所示的三棱锥CBAP,其中底面BAP是BAP90的直角三角形,AB3,AP3,所以BP6,又棱CB平面BAP且CB3,所以AC6,所以该几何体的表面积是3333636327,故选D.答案:D3.(2018西安八校联考)某几何体的三视图如图所示,则该几何体的体积是()A.B.C2D4解析:由三
7、视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V13122,故选B.答案:B4(2018高考全国卷)在长方体ABCDA1B1C1D1中,ABBC2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A8B6C8D8解析:如图,连接AC1,BC1,AC.AB平面BB1C1C,AC1B为直线AC1与平面BB1C1C所成的角,AC1B30.又ABBC2,在RtABC1中,AC14,在RtACC1中,CC12,V长方体ABBCCC12228.故选C.答案:C1活用求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面
8、几何问题,即空间图形平面化,这是解决立体几何的主要出发点(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积2活用求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体空间几何体与球的切、接问题授课提示:对应学生用书第36页悟通方法结论1解决与球有关的“切”“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把
9、空间问题转化为平面问题,从而寻找几何体各元素之间的关系2记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.正方体的外接球,则2Ra;正方体的内切球,则2Ra;球与正方体的各棱相切,则2Ra.(2)在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R.(3)正四面体的外接球与内切球的半径之比为31.(1)(2017高考全国卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A B. C. D.解析:设圆柱的底面半径为r,则r2122,所以,圆柱的体积V1,故选B.答案:B(2)(2017高考全国卷)已知三棱锥SABC的所有顶点都在球
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-572004.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
江苏省徐州市三校2021届高三上学期期末联考物理试卷 PDF版含答案.pdf
