分享
分享赚钱 收藏 举报 版权申诉 / 5

类型2020-2021学年八年级数学上册 难点突破23 二元一次方程组解法-代入法试题 北师大版.docx

  • 上传人:a****
  • 文档编号:576178
  • 上传时间:2025-12-10
  • 格式:DOCX
  • 页数:5
  • 大小:102.80KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年八年级数学上册 难点突破23 二元一次方程组解法-代入法试题 北师大版 2020 2021 学年 八年 级数 上册 难点 突破 23 二元 一次 方程组 解法 代入 试题 北师大
    资源描述:

    1、专题23二元一次方程组解法-代入法【知识点总结】一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方

    2、程中达到消元的目的(2)代入消元法的技巧是:当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;若方程组中有未知数的系数为1(或1)的方程则选择系数为1(或1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或1,选系数绝对值较小的方程变形比较简便一、用代入法解二元一次方程组1、用代入法解方程组: .【思路点拨】直接将上面的式子代入下面的式子,化简整理即可.【答案与解析】解:将代入得:去括号,移项,合并,系数化1得: 把代入得: 原方程组的解为:【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.2、用代入法解

    3、二元一次方程组:【思路点拨】观察两个方程的系数特点,可以发现方程中x的系数为1,所以把方程中的x用y来表示,再代入中即可.【答案与解析】解:由得x5y 将代入得5(5y)2y40,解得:y3,把y3代入,得x5y532所以原方程组的解为【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”3、用代入法解方程组: 【思路点拨】比较两个方程未知数的系数,发现中x的系数较小,所以先把方程中x用y表示出来,代入,这样会使计算比较简便【答案与解析】解:由得 将代入 ,解得将

    4、代入,得x3所以原方程组的解为【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”4、“整体代入”解方程组:【答案与解析】解:由,得 .将代入,得,解得.把代入,得.所以原方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算5、解方程组【答案】解: 将代入:, 得 y=4,将y=4代入:2x12=2 得 x=7,原方程组的解是.二、由解确定方程组中的相关量1、 方程组的解的值相等,则的值是 .【思路点拨】将代入上式,可得

    5、的值,再代入下面的方程可得值. 【答案】1【解析】解:将代入得,再代入得.【总结升华】一般地,先将k看作常数,解关于x,y的二元一次方程组再令x=m或y=m,得到关于m的方程,解方程即可2、若方程组的解为,试求的值.【答案与解析】解:将代入得,即,解得.【总结升华】将已知解代入原方程组得关于的方程组,再解关于方程组得的值.三、方程组解的应用1、已知关于x,y的方程组的解满足方程3x+2y19,求m的值【思路点拨】要求m就必须设法建立关于m的方程,因此,应先求出方程组的解,然后将所求出的解代入3x+2y19中,问题便可解决【答案与解析】解:由得: 将代入,解得 将代入,解得 所以原方程组的解为把

    6、方程组的解代入方程3x+2y19中,得37m+2(m)19,所以m1【总结升华】本题也可以看作三元一次方程组的问题来解决2、已知和方程组的解相同,求的值【思路点拨】两个方程组有相同的解,这个解是2x+5y6和3x5y16的解由于这两个方程的系数都已知,故可联立在一起,求出x、y的值再将x、y的值代入axby4,bx+ay8中建立关于a、b的方程组即可求出a、b的值【答案与解析】解:依题意联立方程组+得5x10,解得x2把x2代入得:22+5y6,解得y2,所以,又联立方程组,则有,解得 所以(2a+b)20111【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年八年级数学上册 难点突破23 二元一次方程组解法-代入法试题 北师大版.docx
    链接地址:https://www.ketangku.com/wenku/file-576178.html
    相关资源 更多
  • 任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx
  • 任命后个人表态发言.docx任命后个人表态发言.docx
  • 任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx
  • 任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx
  • 任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx
  • 任务突破练7 赏析环境——明辨类型,关注效果.docx任务突破练7 赏析环境——明辨类型,关注效果.docx
  • 任务突破练2 论证分析——关注论据判定,辨清论证思路.docx任务突破练2 论证分析——关注论据判定,辨清论证思路.docx
  • 任务突破练21 语用中的常备考点.docx任务突破练21 语用中的常备考点.docx
  • 任务突破练20 情境化的语言表达题.docx任务突破练20 情境化的语言表达题.docx
  • 任务突破练12 文言文选择题.docx任务突破练12 文言文选择题.docx
  • 任务三 尝试创作.docx任务三 尝试创作.docx
  • 任前集体廉政谈话会讲话提纲10篇.docx任前集体廉政谈话会讲话提纲10篇.docx
  • 任前廉政谈话表态发言最新.docx任前廉政谈话表态发言最新.docx
  • 价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx
  • 仰望星空与脚踏实地.docx仰望星空与脚踏实地.docx
  • 仰望大树.docx仰望大树.docx
  • 仪表联锁系统管理制度.docx仪表联锁系统管理制度.docx
  • 仪表联锁系统管理.docx仪表联锁系统管理.docx
  • 仪表维护管理制度.docx仪表维护管理制度.docx
  • 仪表电工岗位操作规程.docx仪表电工岗位操作规程.docx
  • 仪表公司消防应急预案.docx仪表公司消防应急预案.docx
  • 仪控部岗位责任制.docx仪控部岗位责任制.docx
  • 仪器——2022年浙江省杭州市中考科学.docx仪器——2022年浙江省杭州市中考科学.docx
  • 以项目实践谈建筑施工项目的安全生产管理.docx以项目实践谈建筑施工项目的安全生产管理.docx
  • 以车抵押借款合同 .docx以车抵押借款合同 .docx
  • 以质量安全为核心 强化现场标准化管理.docx以质量安全为核心 强化现场标准化管理.docx
  • 以积极向上的态度涵养高尚师德.docx以积极向上的态度涵养高尚师德.docx
  • 以科学发展观指导铁路安全管理创新.docx以科学发展观指导铁路安全管理创新.docx
  • 以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1