2020-2021学年新教材高考数学 第三章 圆锥曲线的方程 1综合拔高练基础过关(含解析)新人教A版选择性必修第一册.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年新教材高考数学 第三章 圆锥曲线的方程 1综合拔高练基础过关含解析新人教A版选择性必修第一册 2020 2021 学年 新教材 高考 数学 第三 圆锥曲线 方程 综合 拔高 基础
- 资源描述:
-
1、综合拔高练五年高考练考点1椭圆的定义及其标准方程1.(2019课标全国,10,5分,)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.x22+y2=1B.x23+y22=1C.x24+y23=1D.x25+y24=12.(2019课标全国,15,5分,)设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若MF1F2为等腰三角形,则M的坐标为.3.(2019浙江,15,4分,)已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点
2、在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.深度解析考点2椭圆的几何性质4.(2019北京,4,5分,)已知椭圆x2a2+y2b2=1(ab0)的离心率为12,则()A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b5.(2017课标全国,10,5分,)已知椭圆C:x2a2+y2b2=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63B.33C.23D.136.(2018浙江,17,4分,)已知点P(0,1),椭圆x24+y2=m(m1)上两点A,B满足AP=2PB,则当m=时,点B横坐标的
3、绝对值最大.考点3直线与椭圆的位置关系7.(2018课标全国,12,5分,)已知F1,F2是椭圆C:x2a2+y2b2=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()A.23B.12C.13D.148.(2019天津,18,13分,)设椭圆x2a2+y2b2=1(ab0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OPMN,求直线PB的斜
4、率.9.(2019课标全国,21,12分,)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连接QE并延长交C于点G.(i)证明:PQG是直角三角形;(ii)求PQG面积的最大值.三年模拟练应用实践1.(2020北京西城高二上期末,)已知椭圆C:x2a2+y24=1(a0)的一个焦点为(2,0),则a的值为()A.22B.6C.6D.82.(2020山东烟台高二上期末,)已知椭圆M:x2a2+y2b2=1(ab0),过M
5、的右焦点F(3,0)作直线交椭圆于A,B两点,若AB的中点坐标为(2,1),则椭圆M的方程为()A.x29+y26=1B.x24+y2=1C.x212+y23=1D.x218+y29=13.(2020天津耀华中学高二上期末,)已知椭圆C:x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,如果C上存在一点Q,使F1QF2=120,则椭圆的离心率e的取值范围为()A.0,12B.12,1C.0,32D.32,14.(2020安徽合肥高二上期末,)已知点O为坐标原点,点F是椭圆C:x2a2+y2b2=1(ab0)的左焦点,点A(-2,0),B(2,0)分别为C的左、右顶点,点P为椭圆C上
6、一点,且PFx轴,过点A的直线l交线段PF于点M,与y轴交于点E.若直线BM经过OE上靠近O点的三等分点,则|PF|=()A.4B.32C.2D.35.(2020四川成都高二上期末,)设椭圆C:x249+y2b2=1(0bb0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.11.(2020福建三明高二上普通高中期末,)阿基米德(公元前287年公元前212年)不仅是著
7、名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知平面直角坐标系Oxy中,椭圆C:x2a2+y2b2=1(ab0)的面积为23,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆C的标准方程;(2)过点P(1,0)的直线l与C交于不同的两点A,B,求OAB面积的最大值.迁移创新12.()如图,已知椭圆x2a2+y2b2=1(ab0)过点1,22,离心率为22,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.(1)求椭圆的标准方程;(2)设
8、直线PF1、PF2的斜率分别为k1、k2.证明:1k1-3k2=2;问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.答案全解全析五年高考练1.B设|F2B|=x(x0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在BF1F2中,由余弦定理得|BF1|2=|F2B|2+|F1F2|2-2|F2B|F1F2|cosBF2F
9、1,即9x2=x2+22-4xcosBF2F1,在AF1F2中,由余弦定理得|AF1|2=|AF2|2+|F1F2|2-2|AF2|F1F2|cosAF2F1,即4x2=4x2+22-8xcosAF2F1,由,得x=32,所以2a=4x=23,a=3,所以b2=a2-c2=2.故椭圆的方程为x23+y22=1.故选B.2.答案(3,15)解析不妨设F1,F2分别是椭圆C的左、右焦点,由M点在第一象限,MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程x236+y220=1,知|F1F2|=8,|F1M|+|F2M|=26=12,所以|F1M|=|F1F2|=8,|F2M|=4.设
10、M(x0,y0)(x00,y00),则(x0+4)2+y02=64,(x0-4)2+y02=16,解得x0=3,y0=15,即M(3,15).3.答案15解析如图,记椭圆的右焦点为F,取PF中点M,由题知a=3,b=5,c=2,连接OM,PF,则|OM|=|OF|=2,又M为PF的中点,|PF|=2|OM|,PFOM,|PF|=4,又P在椭圆上,|PF|+|PF|=6,|PF|=2,在PFF中,|PF|=|FF|=4,|PF|=2,连接FM,FM=1,则FMPF,|FM|=|FF|2-|FM|2=16-1=15,kPF=tanPFF=|FM|FM|=15,即直线PF的斜率为15.解后反思试题中
11、只出现了椭圆的一个焦点,需要作出另一个焦点.将椭圆定义作为隐含条件直接应用是求解本题的突破口;由条件中的中点M联想到利用三角形中位线的性质求出PF的长度是解决本题的关键.4.B由题意知a2-b2a2=e2=14,整理,得3a2=4b2,故选B.5.A以线段A1A2为直径的圆的方程为x2+y2=a2,该圆与直线bx-ay+2ab=0相切,|b0-a0+2ab|b2+(-a)2=a,即2b=a2+b2,a2=3b2,a2=b2+c2,c2a2=23,e=ca=63.6.答案5解析设B(t,u),由AP=2PB,易得A(-2t,3-2u).点A,B都在椭圆上,t24+u2=m,4t24+(3-2u)
12、2=m,从而有3t24+3u2-12u+9=0,即t24+u2=4u-3.4u-3=mu=m+34,t24+(m+3)216=m,t2=-14m2+52m-94=-14(m-5)2+4.当m=5时,(t2)max=4,即|t|max=2,故当m=5时,点B横坐标的绝对值最大.7.D由题意可得直线AP的方程为y=36(x+a),直线PF2的方程为y=3(x-c).联立,得y=35(a+c),如图,过P向x轴引垂线,垂足为H,则PH=35(a+c).因为PF2H=60,PF2=F1F2=2c,PH=35(a+c),所以sin60=PHPF2=35(a+c)2c=32,即a+c=5c,即a=4c,所
13、以e=ca=14.故选D.8.解析(1)设椭圆的半焦距为c,依题意,得2b=4,ca=55,又a2=b2+c2,所以a=5,b=2,c=1.所以椭圆的方程为x25+y24=1.(2)由题意,设P(xP,yP)(xP0),M(xM,0).设直线PB的斜率为k(k0),又B(0,2),则直线PB的方程为y=kx+2,与椭圆方程联立,得y=kx+2,x25+y24=1,整理,得(4+5k2)x2+20kx=0,可得xP=-20k4+5k2,代入y=kx+2,得yP=8-10k24+5k2,进而直线OP的斜率yPxP=4-5k2-10k.在y=kx+2中,令y=0,得xM=-2k.由题意得N(0,-1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-579902.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
