2020版高考数学培优考前练理科通用版练习:8-1 坐标系与参数方程(二选一) WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学培优考前练理科通用版练习:8-1坐标系与参数方程二选一 WORD版含解析 2020 高考 数学 考前 理科 通用版 练习 坐标系 参数 方程 二选一 WORD 解析
- 资源描述:
-
1、专题八选考内容8.1坐标系与参数方程(二选一)命题角度1极坐标与直角坐标、参数方程与普通方程的互化高考真题体验对方向1.(2019全国22)在直角坐标系xOy中,曲线C的参数方程为x=1-t21+t2,y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos +3sin +11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-11-t21+t21,且x2+y22=1-t21+t22+4t2(1+t2)2=1,所以C的直角坐标方程为x2+y24=1(x-1).l的直角坐标方程为2x+3y+11=0.(2)由(
2、1)可设C的参数方程为x=cos,y=2sin(为参数,-).C上的点到l的距离为|2cos+23sin+11|7=4cos-3+117.当=-23时,4cos-3+11取得最小值7,故C上的点到l距离的最小值为7.2.(2018全国22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2+2cos -3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解(1)由x=cos ,y=sin 得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径
3、为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以|-k+2|k2+1=2,故k=-43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以|k+2|k2+1=2,故k=0或k=43,经
4、检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=-43|x|+2.3.(2018全国22)在直角坐标系xOy中,曲线C的参数方程为x=2cos,y=4sin(为参数),直线l的参数方程为x=1+tcos,y=2+tsin(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解(1)曲线C的直角坐标方程为x24+y216=1.当cos 0时,l的直角坐标方程为y=tan x+2-tan ,当cos =0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的
5、方程(1+3cos2)t2+4(2cos +sin )t-8=0,因为曲线C截直线l所得线段的中点(1,2)在C内,所以有两个解,设为t1,t2,则t1+t2=0.又由得t1+t2=-4(2cos+sin)1+3cos2,故2cos +sin =0,于是直线l的斜率k=tan =-2.4.(2018全国22)在平面直角坐标系xOy中,O的参数方程为x=cos,y=sin(为参数),过点(0,-2)且倾斜角为的直线l与O交于A,B两点.(1)求的取值范围;(2)求AB中点P的轨迹的参数方程.解(1)O的直角坐标方程为x2+y2=1.当=2时,l与O交于两点.当2时,记tan =k,则l的方程为y
6、=kx-2,l与O交于两点当且仅当21+k21,解得k1,即4,2或2,34.综上,的取值范围是4,34.(2)l的参数方程为x=tcos,y=-2+tsint为参数,434.设A,B,P对应的参数分别为tA,tB,tP,则tP=tA+tB2,且tA,tB满足t2-22tsin +1=0.于是tA+tB=22sin ,tP=2sin .又点P的坐标(x,y)满足x=tPcos,y=-2+tPsin.所以点P的轨迹的参数方程是x=22sin2,y=-22-22cos2为参数,434.5.(2017全国22)在直角坐标系xOy中,曲线C的参数方程为x=3cos,y=sin,(为参数),直线l的参数
7、方程为x=a+4t,y=1-t,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为17,求a.解(1)曲线C的普通方程为x29+y2=1.当a=-1时,直线l的普通方程为x+4y-3=0.由x+4y-3=0,x29+y2=1,解得x=3,y=0或x=-2125,y=2425.从而C与l的交点坐标为(3,0),-2125,2425.(2)直线l的普通方程为x+4y-a-4=0,故C上的点(3cos ,sin )到l的距离为d=|3cos+4sin-a-4|17.当a-4时,d的最大值为a+917.由题设得a+917=17,所以a=8;当a0),M的极坐标为(1
8、,)(10).由题设知|OP|=,|OM|=1=4cos.由|OM|OP|=16得C2的极坐标方程=4cos (0).因此C2的直角坐标方程为(x-2)2+y2=4(x0).(2)设点B的极坐标为(B,)(B0).由题设知|OA|=2,B=4cos ,于是OAB面积S=12|OA|BsinAOB=4cos sin-3=2sin2-3-322+3.当=-12时,S取得最大值2+3.所以OAB面积的最大值为2+3.典题演练提能刷高分1.(2019山西晋城高三第三次模拟考试)已知平面直角坐标系xOy中,曲线C的参数方程为x=2+3cos,y=1+3sin(为参数).以坐标原点O为极点,x轴正半轴为极
9、轴建立极坐标系.(1)求曲线C的极坐标方程;(2)过点(-2,1)的直线l与曲线C交于A,B两点,且|AB|=2,求直线l的方程.解(1)消去参数,可得曲线C的普通方程为(x-2)2+(y-1)2=9,即x2+y2-4x-2y-4=0.由x=cos,y=sin(为参数)得曲线C的极坐标方程为2-4cos -2sin -4=0.(2)显然直线l的斜率存在,否则无交点.设直线l的方程为y-1=k(x+2),即kx-y+2k+1=0.而|AB|=2,则圆心到直线l的距离d=r2-(AB2)2=9-1=22.又d=|4k|k2+1,所以|4k|k2+1=22,解得k=1.所以直线l的方程为x+y+1=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-593001.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018秋新(苏教版)九年级语文上册课件:专题训练五 文言文基础知识(共15张PPT).ppt
