2020高考理科数学二轮提分广西等课标3卷专用专题能力训练8 利用导数解不等式及参数的取值范围 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考理科数学二轮提分广西等课标3卷专用专题能力训练8利用导数解不等式及参数的取值范围 WORD版含解
- 资源描述:
-
1、专题能力训练8利用导数解不等式及参数的取值范围专题能力训练第22页一、能力突破训练1.(2018全国,理21)已知函数f(x)=(2+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-1x0时,f(x)0时,f(x)0;(2)若x=0是f(x)的极大值点,求a的值.答案:(1)证明当a=0时,f(x)=(2+x)ln(1+x)-2x,f(x)=ln(1+x)-x1+x,设函数g(x)=f(x)=ln(1+x)-x1+x,则g(x)=x(1+x)2,当-1x0时,g(x)0时,g(x)0.故当x-1时,g(x)g(0)=0,且仅当x=0时,g(x)=0,从而f(x)0,且仅当x=0时,
2、f(x)=0.所以f(x)在区间(-1,+)内单调递增.又f(0)=0,故当-1x0时,f(x)0时,f(x)0.(2)解若a0,由(1)知,当x0时,f(x)(2+x)ln(1+x)-2x0=f(0),这与x=0是f(x)的极大值点矛盾.若a0,设函数h(x)=f(x)2+x+ax2=ln(1+x)-2x2+x+ax2.由于当|x|0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h(x)=11+x-2(2+x+ax2)-2x(1+2ax)(2+x+ax2)2=x2(a2x2+4ax+6a+1)(x+1)(ax2+x+
3、2)2.若6a+10,则当0x-6a+14a,且|x|0,故x=0不是h(x)的极大值点.若6a+10,则a2x2+4ax+6a+1=0存在根x10,故当x(x1,0),且|x|min1,1|a|时,h(x)0;当x(0,1)时,h(x)0成立,求实数k的取值范围;(3)当nm1(m,nN*)时,证明:nmmnmn.答案:(1)解f(x)=ax+xln x,f(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,f(e)=3,即a+ln e+1=3,a=1.(2)解由(1)知,f(x)=x+xln x,若f(x)kx2对任意x0成立,则k1+lnxx对任意x0成立.令g(x)
4、=1+lnxx,则问题转化为求g(x)的最大值,g(x)=1xx-(1+lnx)x2=-lnxx2.令g(x)=0,解得x=1.当0x0,g(x)在区间(0,1)内是增函数;当x1时,g(x)0),h(x)0,h(x)是区间(1,+)内的增函数.nm1,h(n)h(m),即nlnnn-1mlnmm-1,mnln n-nln nmnln m-mln m,即mnln n+mln mmnln m+nln n,ln nmn+ln mmln mmn+ln nn.整理,得ln(mnn)mln(nmm)n.(mnn)m(nmm)n,nmmnmn.3.设函数f(x)=ax2-a-ln x,其中aR.(1)讨论
5、f(x)的单调性;(2)确定a的所有可能取值,使得f(x)1x-e1-x在区间(1,+)内恒成立(e=2.718为自然对数的底数).解:(1)f(x)=2ax-1x=2ax2-1x(x0).当a0时,f(x)0时,由f(x)=0,有x=12a.此时,当x0,12a时,f(x)0,f(x)单调递增.(2)令g(x)=1x-1ex-1,s(x)=ex-1-x.则s(x)=ex-1-1.而当x1时,s(x)0,所以s(x)在区间(1,+)内单调递增.又由s(1)=0,有s(x)0,从而当x1时,g(x)0.当a0,x1时,f(x)=a(x2-1)-ln xg(x)在区间(1,+)内恒成立时,必有a0
6、.当0a1.由(1)有f12a0,所以此时f(x)g(x)在区间(1,+)内不恒成立.当a12时,令h(x)=f(x)-g(x)(x1).当x1时,h(x)=2ax-1x+1x2-e1-xx-1x+1x2-1x=x3-2x+1x2x2-2x+1x20.因此,h(x)在区间(1,+)内单调递增.又因为h(1)=0,所以当x1时,h(x)=f(x)-g(x)0,即f(x)g(x)恒成立.综上,a12,+.4.设函数f(x)=aln x,g(x)=12x2.(1)记g(x)为g(x)的导函数,若不等式f(x)+2g(x)(a+3)x-g(x)在x1,e内有解,求实数a的取值范围;(2)若a=1,对任
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-594600.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
某煤矿废水污水处理场高密度沉淀池改造.pdf
