2021—2022学年上期期中高二理科数学答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 期期 中高 理科 数学 答案
- 资源描述:
-
1、河南省实验中学20212022学年上期期中答案高二 理科数学1A【分析】利用基本不等式可推出A正确;利用不等式的性质可推出B不正确;作差后,可知当时,C不正确;当时,D不正确.【详解】对于A,因为,所以,所以,故A正确;对于B,若,则,又,所以,故B不正确;对于C,因为,所以当时,此时,故C不正确;对于D,当时,不成立,故D不正确.故选:A2D【分析】由正弦定理即可求解【详解】在中,由正弦定理可得,所以,因为,所以,因为,所以或,故选:D.3A【分析】由已知得和,可求出,利用等差数列的通项公式得到.【详解】设公差不为零的等差数列的公差为d,则有,因为,依次成等比数列,所以有,即,整理得,因为,
2、所以,因此,故选:A.4D【分析】利用三角形的面积公式整理得出,利用二倍角的正弦和余弦公式化简得出,结合角的取值范围可求得结果.【详解】在中,因为,则,则,则,所以,可得,故.故选:D.5B【分析】根据题设条件结合余弦定理可求得,从而可得,结合三角形面积公式,即可求解.【详解】,边上的中线的长度为根据余弦定理可得,即,解得的面积为故选:B6A【分析】根据题意,得到小球经过的里程,结合等比数列的求和公式,即可求解.【详解】由题意,可得小球10次着地共经过的路程为:米故选:A.7C【分析】根据,利用正弦定理转化为:,整理为再转化为角判断.【详解】因为,所以由正弦定理得:,所以 ,即 ,所以或 ,所
3、以或,所以是等腰或直角三角形.故选:C【点睛】本题主要考查正弦定理判断三角形的形状,还考查了运算求解的能力,属于中档题.8A【分析】根据圆的性质、射影定理求出CD和DE的长度,利用CDDE即可得到答案.【详解】连接DB,因为AB是圆O 的直径,所以,所以在中,中线,由射影定理可得,所以.在中,由射影定理可得,即,由得,故选A. 【点睛】本题考查圆的性质、射影定理的应用,考查推理能力,属于中档题.9C【分析】根据等差数列的性质及等差数列前n项和的性质,逐步化简,即可得到本题答案【详解】由题意可知b3b13b5b11b1b152b8,故选:C10C【分析】由基本不等式得出关于的不等式,解之可得【详
4、解】因为,所以,当且仅当时取等号,解得或(舍去),所以,即的最小值.4此时故选:C11D【分析】由先求出,从而得出,由讨论出其单调性,从而得出答案.【详解】当时,;由,当时,两式相减,可得,解得,当时,也符合该式,故所以由,解得;又,所以,所以,当时,故,因此最大项为,故选:D12C【详解】由题意得:,又,数列是以为首项,为公比的等比数列,又,;,对恒成立,则实数的最大值为.故选:C.【点睛】关键点点睛:本题考查函数与导数、数列的综合应用问题,解题关键是能够采用构造法、累加法求得数列的通项公式,进而确定求和方法为裂项相消法,从而求得的形式.13【分析】由三角形面积公式求A,再由余弦定理求BC.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
