2021高考数学(理)人教A版一轮复习学案 作业:第十一章 11-2 随机抽样、用样本估计总体 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理人教A版一轮复习学案 作业:第十一章 11-2 随机抽样、用样本估计总体 WORD版含解析 2021 高考 数学 人教 一轮 复习 作业 第十一 11 随机 抽样 样本 估计 总体
- 资源描述:
-
1、11.2随机抽样、用样本估计总体最新考纲考情考向分析1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样的方法.2.了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.3.理解样本数据标准差的意义和作用,会计算数据标准差.4.能从样本数据中提取基本的数字特征(如平均数,标准差),并作出合理的解释.5.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.6.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.在抽样方法中,系统抽样、分层抽样是
2、考查的重点.2.考查平均数、方差的计算及茎叶图与频率分布直方图的简单应用.3.题型以选择题、填空题为主,出现解答题时常与概率结合.1随机抽样(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样(2)系统抽样:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样(3)分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的
3、个体合在一起作为样本,这种抽样方法是一种分层抽样2用样本的频率分布估计总体分布(1)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示各小长方形的面积总和等于1.(2)频率分布折线图和总体密度曲线频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线(3)茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数3用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数(2)中位数:将数据从小到大排列,若
4、有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数(3)平均数:,反映了一组数据的平均水平(4)标准差:是样本数据到平均数的一种平均距离,s .(5)方差:s2(x1)2(x2)2(xn)2(xn是样本数据,n是样本容量,是样本平均数)概念方法微思考1三种抽样方法有什么共同点和联系?提示(1)抽样过程中每个个体被抽取的机会均等(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样2平均数、标准差与方差反映了数据的哪些特征?提示平均数反映了数据取值的平均水平,标准差、方差反映了数据对平均数的波动情况,即标准差、方差越大,数据的离散
5、程度越大,越不稳定;反之离散程度越小,越稳定题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关()(2)系统抽样在第1段抽样时采用简单随机抽样()(3)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论()(4)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数()题组二教材改编2某公司有员工500人,其中不到35岁的有125人,3549岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A33,34,33 B25,56,19C20,40,3
6、0 D30,50,20答案B解析设在不到35岁的员工抽取x人,则,所以x25,同理可得这三个年龄段抽取人数分别为25,56,19.3.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A91.5和91.5 B91.5和92C91和91.5 D92和92答案A解析这组数据由小到大排列为87,89,90,91,92,93,94,96,中位数是91.5,平均数91.5.4如图是100位居民月均用水量的频率分布直方图,则月均用水量在2,2.5)范围内的居民有_人答案25解析0.50.510025.题组三易错自纠5从编号为150的50枚最新研制的某种型号的导弹中随机
7、抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A5,10,15,20,25 B3,13,23,33,43C1,2,3,4,5 D2,4,6,16,32答案B解析间隔距离为10,故可能的编号是3,13,23,33,43.6若数据x1,x2,x3,xn的平均数5,方差s22,则数据3x11,3x21,3x31,3xn1的平均数和方差分别为_答案16,18解析x1,x2,x3,xn的平均数为5,5,135116,x1,x2,x3,xn的方差为2,3x11,3x21,3x31,3xn1的方差是32218.抽样方法1用简单随机抽样的方法从含有10个
8、个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A., B.,C., D.,答案A解析方法一在抽样过程中,个体a每一次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为.故选A.方法二第一次被抽到,显然为;第二次被抽到,首先第一次不能被抽到,第二次抽才被抽到可能性为.故选A.2(2019海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A15 B18 C
9、21 D22答案C解析由已知得间隔数为k6,则抽取的最大编号为3(41)621.3(2019安徽毛坦厂中学模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果疏类食品种数之和是_答案6解析本题主要考查对分层抽样的理解抽样比为,则抽取的植物油类种数是102,抽取的果蔬类食品种数是204,所以抽取的植物油类与果蔬类食品种数之和是246.思维升华 (1)简单随机抽样是系统抽样和分层抽样的基础,是一种等概率的抽样,由定义应抓住以下特点:它要求总体个数较少
10、;它是从总体中逐个抽取的;它是一种不放回抽样(2)系统抽样又称等距抽样,号码序列一确定,样本即确定了,但要求总体中不能含有一定的周期性,否则其样本的代表性是不可靠的,甚至会导致明显的偏向(3)分层抽样适用于总体中个体差异较大的情况(4)抽样方法经常交叉使用,比如系统抽样中的第一均衡部分,可采用简单随机抽样,分层抽样中,若每层中个体数量仍很大时,则可辅之以系统抽样统计图表及应用命题点1扇形图例1(2018全国)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的
11、是()A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案A解析设新农村建设前,农村的经济收入为a,则新农村建设后,农村的经济收入为2a.新农村建设前后,各项收入的对比如下表:新农村建设前新农村建设后新农村建设后变化情况结论种植收入60%a37%2a74%a增加A错其他收入4%a5%2a10%a增加了一倍以上B对养殖收入30%a30%2a60%a增加了一倍C对养殖收入第三产业收入(30%6%)a36%a(30%28%)2a116%a超过经济收入2a的一半D对故选A.命题点2折线图
12、例2(2017全国)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案A解析对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确故选A.命题点3茎叶图例3如图所示的茎叶图记录了甲,乙两
13、组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均数也相等,则x和y的值分别为()A3,5 B5,5 C3,7 D5,7答案A解析甲组数据的中位数为65,由甲,乙两组数据的中位数相等,得y5.又甲、乙两组数据的平均数相等,(5665627470x)(5961676578),x3.故选A.命题点4频率分布直方图例4(2019南昌调研)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图(1)直方图中x的值为_;(2)在这些用户中,月用电量落在区间100,250)内的户数为_答案(1)0.004 4(2)70解析(1)由频率分布直方图
14、知数据落在200,250)内的频率为1(0.002 40.003 60.006 00.002 40.001 2)500.22,于是x0.004 4.(2)因为数据落在100,250)内的频率为(0.003 60.006 00.004 4)500.7,所以所求户数为0.710070.思维升华 (1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势(3)由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信
15、息损失,第二点是茎叶图便于记录和表示其缺点是当样本容量较大时,作图较烦琐(4)准确理解频率分布直方图的数据特点:频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆频率分布直方图中各小长方形的面积之和为1,这是解题的关键,常利用频率分布直方图估计总体分布跟踪训练(1)(2019洛阳模拟)已知某地区中小学生人数和近视情况分别如图和图所示为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A200,20 B100,20C200,10 D100,10答案A解析由图得样本容量为(
16、3 5002 0004 500)2%10 0002%200,抽取的高中生人数为2 0002%40(人),则近视人数为400.520(人),故选A.(2)(2019昆明质检)“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高如图是2017年9月到2018年2月这半年来,某个关键词的搜索指数变化的统计图根据该统计图判断,下列结论正确的是()A这半年来,网民对该关键词相关的信息关注度呈周期性变化B这半年来,网民对该关键词相关的信息关注度不断减弱C从该关键词的搜索指数来看,2017年10月的方差小于
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632117.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2019-2020人教版语文必修2课件:第2课 故都的秋课后素能精练 .ppt
