分享
分享赚钱 收藏 举报 版权申诉 / 31

类型2022-2023学年人教版九年级数学上册期中专题训练试题 卷(Ⅱ)(解析卷).docx

  • 上传人:a****
  • 文档编号:635215
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:31
  • 大小:651.79KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年人教版九年级数学上册期中专题训练试题 卷解析卷 2022 2023 学年 人教版 九年级 数学 上册 期中 专题 训练 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专题训练试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚

    2、好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米2、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)30003、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实

    3、数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根4、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,695、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+2000二、多

    4、选题(5小题,每小题4分,共计20分)1、如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是( )A2a+b=0Babc0C方程ax2+bx+c=3有两个相等的实数根 线 封 密 内 号学级年名姓 线 封 密 外 D抛物线与x轴的另一个交点是(1,0)E当1x4时,有y2y12、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)2103、已知关于的方程,下列判断正确的是()A当时,方程有两个正实数根B当时,方程有两个不

    5、等实根C当时,方程无解D不论为何值时,方程总有实数根4、如图,O是正ABC内一点,OA3,OB4,OC5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论中正确的结论是( )ABOA可以由BOC绕点B逆时针旋转60得到B点O与O的距离为4CAOB150DS四边形AOBO6+3ESAOC+SAOB6+5、已知二次函数yax2bxc(a0)的图象如图所示,下列结论正确的有( )A2ab0Babc0C4a2bc0Dac0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、如图,在

    6、平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_3、二次函数yax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_4、抛物线的图象和轴有交点,则的取值范围是_ 线 封 密 内 号学级年名姓 线 封 密 外 5、若二次函数yx2+mx在1x2时的最大值为3,那么m的值是_四、解答题(5小题,每小题8分,共计40分)1、水果批发市场有一种高档水果

    7、,如果每千克盈利(毛利)10元,每天可售出600kg经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元2、已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型

    8、的新图象(即新函数m:y=|x22x3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围3、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个

    9、整点时,结合函数图象,直接写出a的取值范围.4、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H, 线 封 密 内 号学级年名姓 线 封 密 外 连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标5、解方程(组):

    10、(1)(2);(3)x(x7)8(7x).-参考答案-一、单选题1、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,

    11、x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-, 线 封 密 内 号学级年名姓 线 封 密 外 -=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答2、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:

    12、(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程3、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根

    13、的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.4、A【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方5、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+2

    14、60x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键二、多选题1、ACE【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系进行判断即可【详解】解:抛物线开口向下,抛物线的对称轴,2a+b=0,故A正确;抛物线与y轴的交点在y轴的正半轴,abc0,故B错误;抛物线y1=ax2+bx+c与直线y=3只有一个交点,因此方程ax2+bx+c=3有两个相等的实数根,故C正确;根据抛物线的对称性可知,抛物线与x轴的另一个交点是(2,0),故D错误;根据图象,当1x4时,抛物线在直线的上方,因此有y2y1,故E正

    15、确; 线 封 密 内 号学级年名姓 线 封 密 外 故选:ACE【点睛】本题考查了二次函数和一次函数的图象问题,认真观察图象找到有用信息是解题的关键2、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意;D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无

    16、实数根3、AC【解析】【分析】根据根的判别式代入k值计算即可得到答案【详解】解:A、当时,解得,选项说法正确,符合题意;B、当时,所以方程无实数根,选项说法错误,不符合题意;C、当时,所以方程无解,选项说法正确,符合题意;D、不论为何值时,方程不一定有实数根,选项说法错误,不符合题意;故选AC【点睛】本题考查了一元二次方程的判别式,解题的关键是熟练掌握一元二次方程跟的判别与方程解得关系4、ABCE【解析】【分析】证明可判断 证明是等边三角形,可判断 利用是等边三角形,证明可判断 由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为

    17、的直角三角形,从而可判断【详解】解:由题意得:为等边三角形, BOA可以由BOC绕点B逆时针旋转60得到,故符合题意;如图,连接,由 是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 则点O与O的距离为4,故符合题意; 故符合题意;如图,过作于 是等边三角形, S四边形AOBO 故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得: 故符合题意;故选:【点睛】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.5、AD【解析】【分析】

    18、结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,故A选项正确;abc0,故B选项错误;根据图象可知,当x=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【点睛】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值三、填空题1、y3x22或y3x22【解析】【分析】根据二次函数的图象特点即可分类求解【详解】二

    19、次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等2、【解析】【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【考点】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键3、(1,0)【解析】【分析】根据表

    20、中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0),抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函

    21、数的性质4、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数5、4或2【解析】【分析】根据抛物线的对称轴公式,即可建立关于m的等式,解方程求出m的值即可【详解】解:yx2+mx,抛物线开口向下,抛物线的对称轴为x,当1,即m2时,当x1时,函数最大值为3,1m3,解得:m4;当2,即m4时,当x2时,函数最大值为3,4+2m3,解得:m(舍去)当12,即2m4时,当x时,函数最大值为3,3,解得m2或m2(舍去),综上所述,m4或m2,故答案为:4或2【考点】本题考查了二次函数的最

    22、值,掌握抛物线的对称轴公式是解题的关键四、解答题1、 (1)每天的总毛利润为7820元; 线 封 密 内 号学级年名姓 线 封 密 外 (2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利销售的千克数总利润,列出方程解答即可;(3)利用每天总毛利润税费人工费水电房租费每天总纯利润,列出方程解答即可(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x10时,y600,当x11时,y60020580,由题意得,解得所以销量y与盈利x元之间的关系为y20x+80

    23、0,当x17时,y460,则每天的毛利润为174607820元;(2)解:设每千克盈利x元,由(1)可得销量为(20x+800)千克,由题意得x(20x+800)7500,解得:x125,x215,要使得顾客得到实惠,应选x15,每千克应涨价15105元;(3)解:设每千克盈利x元,由题意得x(20x+800)10%x(20x+800)1.5(20x+800)3006000,解得:x125,x2,则每千克应涨价251015元或10元【点睛】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键2、 (1)d=;(2)d=或d=(3)d或d; (4)d。

    24、【解析】【分析】(1)令x22x3=xd求解即可;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(3,0)时,d=;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0), 线 封 密 内 号学级年名姓 线 封 密 外 直线l:y=xd与抛物线c:y=x22x3(3x1)相切于点P,则点P的横坐标恰好是方程xd=x22x3,即2x23x2d6=0(3x1)的两个相等实数根,解=98(2d6

    25、)=0得d=,点P的坐标为().当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=; 综合、得:d=或d=(3)由平移直线l可得:直线l从经过点A(3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得d 直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d;综合、得:d或d; (4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图

    26、象有且只有三个公共点,可得d=;要使直线l与这个新图象有四个公共点则d的取值范围是d.【点睛】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系3、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得; 线 封 密 内 号学级年名姓 线 封 密 外 分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】

    27、解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键4、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求

    28、出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3), 线 封 密 内 号学级年名姓 线 封 密 外 B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D

    29、,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t, 线 封 密 内 号学级年名姓 线 封 密 外 当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,

    30、0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键5、 (1)(2)x(3)x17,x28【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1.所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(x7)0,(x7)(x8)0.x70,或x80.x17,x28. 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册期中专题训练试题 卷(Ⅱ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-635215.html
    相关资源 更多
  • 【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题四 14~18世纪西方文明的勃兴5a.docx【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题四 14~18世纪西方文明的勃兴5a.docx
  • 【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题七 二战后的世界与中国13a.docx【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题七 二战后的世界与中国13a.docx
  • 【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题七 二战后的世界与中国12a.docx【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题七 二战后的世界与中国12a.docx
  • 【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题一 先秦及秦汉时期中华文明奠基发展与古代西方文明2a.docx【金版教程】(全国通用)2022高考历史二轮专题复习热点聚焦 重组检测专题一 先秦及秦汉时期中华文明奠基发展与古代西方文明2a.docx
  • 【金版教程】(全国通用)2022届高考地理大二轮复习高效提能训练 第一部分 方法与技能 专题一 高考四大能力要求.docx【金版教程】(全国通用)2022届高考地理大二轮复习高效提能训练 第一部分 方法与技能 专题一 高考四大能力要求.docx
  • 【金版教程】(全国通用)2022届高考地理大二轮复习热身练习 综合类模板及其应用 探究目标3.docx【金版教程】(全国通用)2022届高考地理大二轮复习热身练习 综合类模板及其应用 探究目标3.docx
  • 【金版教程】(全国通用)2022届高考地理大二轮复习热身练习 综合类模板及其应用 探究目标2.docx【金版教程】(全国通用)2022届高考地理大二轮复习热身练习 综合类模板及其应用 探究目标2.docx
  • 【金版教程】(全国通用)2022届高考地理大二轮复习实战演练 第二部分 专题与热点 专题四 区域地理与区域可持续发展4.docx【金版教程】(全国通用)2022届高考地理大二轮复习实战演练 第二部分 专题与热点 专题四 区域地理与区域可持续发展4.docx
  • 【金版教程】2022届高考生物二轮复习 适考素能特训 2-4-3变异、育种与与进化 新人教版.docx【金版教程】2022届高考生物二轮复习 适考素能特训 2-4-3变异、育种与与进化 新人教版.docx
  • 【金版教程】2022届高考生物二轮复习 适考素能特训 2-3-2细胞的分化、衰老、凋亡和癌变 新人教版.docx【金版教程】2022届高考生物二轮复习 适考素能特训 2-3-2细胞的分化、衰老、凋亡和癌变 新人教版.docx
  • 【金版教程】2022届高考生物二轮复习 适考素能特训 2-3-1细胞分裂和受精作用 新人教版.docx【金版教程】2022届高考生物二轮复习 适考素能特训 2-3-1细胞分裂和受精作用 新人教版.docx
  • 【金版教程】2022届高考生物二轮复习 适考素能特训 2-1-1细胞的分子组成 新人教版.docx【金版教程】2022届高考生物二轮复习 适考素能特训 2-1-1细胞的分子组成 新人教版.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第6章 第1节(含解析) 新人教版必修1.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第6章 第1节(含解析) 新人教版必修1.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第6章 第1、2节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第6章 第1、2节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第3节 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第3节 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第2、3节(含解析) 新人教版必修1.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第2、3节(含解析) 新人教版必修1.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第2、3节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第2、3节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第1节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第5章 第1节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第4章 第1、2节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第4章 第1、2节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第2、3、4节 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第2、3、4节 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第1节 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第1节 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第1、2、3节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第3章 第1、2、3节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第2章 第4节 新人教版必修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第2章 第4节 新人教版必修3.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第2章 第2、3节(含解析) 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第2章 第2、3节(含解析) 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第1章 第2节(含解析) 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第1章 第2节(含解析) 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 第1章 第1节(含解析) 新人教版必修2.docx【金版教程】2022届高考生物一轮复习 限时规范特训 第1章 第1节(含解析) 新人教版必修2.docx
  • 【金版教程】2022届高考生物一轮复习 限时规范特训 专题4 新人教版选修3.docx【金版教程】2022届高考生物一轮复习 限时规范特训 专题4 新人教版选修3.docx
  • 【金版学案】(广东专用)2022届高考历史总复习 第六单元 苏联社会主义建设和资本主义经济政策的调整总结提升 新人教版必修2.docx【金版学案】(广东专用)2022届高考历史总复习 第六单元 苏联社会主义建设和资本主义经济政策的调整总结提升 新人教版必修2.docx
  • 【金版学案】(广东专用)2022届高考历史总复习 第二单元 古代中国的科学技术与文学艺术 第2课时 古代中国的文学艺术 新人教版必修3.docx【金版学案】(广东专用)2022届高考历史总复习 第二单元 古代中国的科学技术与文学艺术 第2课时 古代中国的文学艺术 新人教版必修3.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1