2022-2023学年人教版九年级数学上册第二十三章旋转必考点解析试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二十三 旋转 必考 解析 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是()ABCD2、观察下列图案,能通过左图顺时针旋转90得到的()ABCD3、如图,
2、在中,D为内一点,分别连接PA、PB、PC,当时,则BC的值为()A1BCD24、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD5、将绕点旋转得到,则下列作图正确的是( )ABCD6、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD7、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2D9、如图下面图形既是轴对
3、称图形,又是中心对称图形的是()ABCD10、如图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则PDE的度数为()A55B70C80D110第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _2、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_3、在ABC 中,C=90,cm,cm,绕点 C
4、 将ABC 旋转使一直角边的另一个端点落在直线AB 上一点 K,则线段 BK 的长为_ cm4、如图,将绕点O逆时针旋转后得到,若恰好经过点A,且,则的度数为_5、已知点A(2,b)与点B(a,3)关于原点对称,则ab =_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C22、(1)如图1,等边ABC内有一点P,若
5、AP8,BP15,CP17,求APB的大小;(提示:将ABP绕顶点A旋转到ACP处)(2)如图2,在ABC中,CAB90,ABAC,E、F为BC上的点,且EAF45求证:EF2BE2+FC2;(3)如图3,在ABC中,C90,ABC30,点O为ABC内一点,连接AO、BO、CO,且AOCCOBBOA120,若AC,求OA+OB+OC的值3、如图,点在射线上,如果绕点按逆时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:4、小明在一次数学活动中,进行了如下的探究活动:如图,在矩形ABCD中,AB=8,A
6、D=6,以点B为中心,顺时针旋转矩形ABCD,得到矩形BEFG,点A、D、C的对应点分别为E、F、G(1)如图1,当点E落在CD边上时,求DE的长;(2)如图2,当点E落在线段DF上时,BE与CD交于点H求证:ABDEBD;求DH的长(3)如图3,若矩形ABCD对角线ACBD相交于点P,连接PE、PF,记PEF面积为S,请直接写出S的最值5、如图,点P是正方形ABCD内部的一点,APB90,将RtAPB绕点A逆时针方向旋转90得到ADQ,QD、BP的延长线相交于点E(1)判断四边形APEQ的形状,并说明理由;(2)若正方形ABCD的边长为10,DE2,求BE的长-参考答案-一、单选题1、C【解
7、析】【分析】中心对称图形是指把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,根据定义结合图形判断即可【详解】根据对中心对称图形的定义结合图像判断,A、B属于轴对称图形,C选项满足中心对称图形的定义,故选:C【考点】本题考查中心对称图形的定义,根据定义结合图形分析并选出适合的选项是解决本题的关键2、A【解析】【分析】根据旋转的定义,观察图形即可解答.【详解】根据旋转的定义,图片按顺时针方向旋转90度,大拇指指向右边,其余4个手指指向下边,从而可确定为A图故选A【考点】本题主要考查了旋转的性质,熟知性质是解题的关键.3、C【解析】【分析】将B
8、PA顺时针旋转60,到BMN处,得到BPM,ABN是等边三角形,证明C、P、M、N四点共线,且CAN=90,设BC=x,则AB=BN=2x,AC=,利用勾股定理计算即可【详解】将BPA顺时针旋转60,到BMN处,则BPM,ABN是等边三角形,BPM=BMP=60,BAN=60,PM=PB,BA=BN,PA=MN,CPB=BPA=APC=BMN=120,BMP+BMN=180,BPC+BPM =180,C、P、M、N四点共线,CP+PM+MN=CP+PB+PA=,BAC=30,BAN=60,CAN=90,设BC=x,则AB=BN=2x,AC=,解得x=,x= - ,舍去,故选C【考点】本题考查了
9、旋转的性质,等边三角形的判定和性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键4、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.5、D【解析】【分析】把一个图形
10、绕某一点O转动一个角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为ABO绕O点旋转了180.【考点】本题考察了旋转的定义.6、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标
11、变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键7、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中,
12、 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键8、A【
13、解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635432.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
