分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022-2023学年人教版九年级数学上册第二十四章圆必考点解析试卷(附答案详解).docx

  • 上传人:a****
  • 文档编号:635835
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:23
  • 大小:447.94KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二 十四 必考 解析 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则它的周长是()A6B12C12D24

    2、2、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D43、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD4、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD5、已知扇形的半径为6,圆心角为则它

    3、的面积是()ABCD6、如图,是的直径,若,则的度数是()A32B60C68D647、如图,、分别切于点、,点为优弧上一点,若,则的度数为()ABCD8、如图,O中,弦ABCD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数是()A1个B2个C3个D4个9、下列多边形中,内角和最大的是()ABCD10、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4cmD3cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知的半径为,直线与相交,则圆心到直线距离的取值范围

    4、是_2、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)3、如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度4、如图,已知点C是O的直径AB上的一点,过点C作弦DE,使CD=CO若AD的度数为35,则的度数是_5、在O中,若弦垂直平分半径,则弦所对的圆周角等于_三、解答题(5小题,每小题10分,共计50分)1、如图,半径为6的O与RtABC的边AB相切于点A,交边BC于点C,D,B=90,连接OD,AD(1)若ACB=20,求的长(结果保留)(2)求证:AD平分BDO2、如图,在RtABC中,ACB

    5、90,BAC的平分线交BC于点O,OC1,以点O为圆心OC为半径作半圆(1)求证:AB为O的切线;(2)如果tanCAO,求cosB的值3、如图,AB是O的直径,C是O上一点,D在AB的延长线上,且BCDA(1)求证:CD是O的切线;(2)若O的半径为3,CD4,求BD的长4、如图,已知O为RtABC的内切圆,切点分别为D,E,F,且C90,AB13,BC12(1)求BF的长;(2)求O的半径r5、如图,已知AB是O的直径,C,D是O上的点,OCBD,交AD于点E,连结BC(1)求证:AE=ED;(2)若AB=10,CBD=36,求的长-参考答案-一、单选题1、C【解析】【分析】如图,先求解正

    6、六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键2、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三

    7、个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键3、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键4、

    8、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键5、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接

    9、计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键6、D【解析】【分析】根据已知条件和圆心角、弧、弦的关系,可知,然后根据对顶角相等即可求解【详解】,故选:D【考点】本题主要考查圆心角、弧、弦的关系、对顶角相等,较简单,掌握基本概念是解题关键7、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAAP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=AP

    10、B,3ACB=180,ACB=60,故选:C【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键8、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90,CFH+FCG90,BAF+AME90,CFHBAF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和

    11、定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题9、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键10、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.二、填空题1、【解析】【分析】根据直线AB和圆相交

    12、,则圆心到直线的距离小于圆的半径即可得问题答案【详解】O的半径为5,直线AB与O相交,圆心到直线AB的距离小于圆的半径,即0d5;故答案为:0d5【考点】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键同时注意圆心到直线的距离应是非负数2、【解析】【分析】先求出圆锥的底面半径,然后根据圆锥的展开图为扇形,结合圆周长公式进行求解即可【详解】设底面圆的半径为rcm,由勾股定理得:r=6,2r=26=12,故答案为12【考点】本题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系3、26【解析】【详解】分析:连接OC,根据

    13、圆周角定理得到COD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=26,故答案为26点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键4、105【解析】【分析】连接OD、OE,根据圆心角、弧、弦的关系定理求出AOD=35,根据等腰三角形的性质和三角形内角和定理计算即可【详解】解:连接OD、OE,的度数为35,AOD=35,CD=CO,ODC=AOD=35,OD=OE,ODC=E=35,DOE=180-ODC-E=180-35-35=110,AOE=DOE-AOD=110-35=7

    14、5,BOE=180-AOE=180-75=105,的度数是105故答案为105【考点】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等5、120或60【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、AB、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对

    15、的圆周角为120或60,故答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键.三、解答题1、 (1)(2)见解析【解析】【分析】(1)连接,由,得,由弧长公式即得的长为;(2)根据切于点,可得,有,而,即可得,从而平分(1)解:连接OA,ACB20,AOD40,(2)证明:,切于点,平分【考点】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质2、(1)证明见解析(2)【解析】【详解】(1)证明:作OMAB于M,OA平分CAB,OCAC,OMAB

    16、,OCOMAB是O的切线(2)设BMx,OBy,则y2x21tanCAO ,ACAM3cosB , x23xy2y由可得y3x1,(3x1)2x21x ,y cosB 3、(1)证明见解析(2)2【解析】【分析】(1)连接OC,由AB是O的直径可得出ACB=90,即ACO+OCB=90,由等腰三角形的性质结合BCD=A,即可得出OCD=90,即CD是O的切线;(2)在RtOCD中,由勾股定理可求出OD的值,进而可得出BD的长【详解】解:(1)如图,连接OCAB是O的直径,C是O上一点,ACB=90,即ACO+OCB=90OA=OC,BCD=A,ACO=A=BCD,BCD+OCB=90,即OCD

    17、=90,CD是O的切线(2)在RtOCD中,OCD=90,OC=3,CD=4,OD=5,BD=ODOB=53=24、(1)BF10;(2)r=2【解析】【分析】(1)设BFBDx,利用切线长定理,构建方程解决问题即可(2)证明四边形OECF是矩形,推出OECF即可解决问题【详解】解:(1)在RtABC中,C90,AB13,BC12,AC5,O为RtABC的内切圆,切点分别为D,E,F,BDBF,ADAE,CFCE,设BFBDx,则ADAE13x,CFCE12x,AE+EC5,13x+12x5,x10,BF10(2)连接OE,OF,OEAC,OFBC,OECCOFC90,四边形OECF是矩形,OECFBCBF12102即r2【考点】本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)证明见解析;(2)【解析】【详解】分析:(1)根据平行线的性质得出AEO=90,再利用垂径定理证明即可;(2)根据弧长公式解答即可详证明:(1)AB是O的直径,ADB=90,OCBD,AEO=ADB=90,即OCAD,AE=ED;(2)OCAD, ,ABC=CBD=36,AOC=2ABC=236=72, =点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十四章圆必考点解析试卷(附答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-635835.html
    相关资源 更多
  • 人教版五年级下册数学期末测试卷(巩固)word版.docx人教版五年级下册数学期末测试卷(巩固)word版.docx
  • 人教版五年级下册数学期末测试卷(巩固).docx人教版五年级下册数学期末测试卷(巩固).docx
  • 人教版五年级下册数学期末测试卷(实验班).docx人教版五年级下册数学期末测试卷(实验班).docx
  • 人教版五年级下册数学期末测试卷(实用)word版.docx人教版五年级下册数学期末测试卷(实用)word版.docx
  • 人教版五年级下册数学期末测试卷(实用).docx人教版五年级下册数学期末测试卷(实用).docx
  • 人教版五年级下册数学期末测试卷(完整版).docx人教版五年级下册数学期末测试卷(完整版).docx
  • 人教版五年级下册数学期末测试卷(夺分金卷).docx人教版五年级下册数学期末测试卷(夺分金卷).docx
  • 人教版五年级下册数学期末测试卷(夺冠)word版.docx人教版五年级下册数学期末测试卷(夺冠)word版.docx
  • 人教版五年级下册数学期末测试卷(夺冠).docx人教版五年级下册数学期末测试卷(夺冠).docx
  • 人教版五年级下册数学期末测试卷(夺冠系列).docx人教版五年级下册数学期末测试卷(夺冠系列).docx
  • 人教版五年级下册数学期末测试卷(基础题).docx人教版五年级下册数学期末测试卷(基础题).docx
  • 人教版五年级下册数学期末测试卷(培优a卷).docx人教版五年级下册数学期末测试卷(培优a卷).docx
  • 人教版五年级下册数学期末测试卷(含答案)word版.docx人教版五年级下册数学期末测试卷(含答案)word版.docx
  • 人教版五年级下册数学期末测试卷(含答案).docx人教版五年级下册数学期末测试卷(含答案).docx
  • 人教版五年级下册数学期末测试卷(名校卷)word版.docx人教版五年级下册数学期末测试卷(名校卷)word版.docx
  • 人教版五年级下册数学期末测试卷(名校卷).docx人教版五年级下册数学期末测试卷(名校卷).docx
  • 人教版五年级下册数学期末测试卷(名师系列)word版.docx人教版五年级下册数学期末测试卷(名师系列)word版.docx
  • 人教版五年级下册数学期末测试卷(名师系列).docx人教版五年级下册数学期末测试卷(名师系列).docx
  • 人教版五年级下册数学期末测试卷(名师推荐).docx人教版五年级下册数学期末测试卷(名师推荐).docx
  • 人教版五年级下册数学期末测试卷(各地真题)word版.docx人教版五年级下册数学期末测试卷(各地真题)word版.docx
  • 人教版五年级下册数学期末测试卷(各地真题).docx人教版五年级下册数学期末测试卷(各地真题).docx
  • 人教版五年级下册数学期末测试卷(原创题).docx人教版五年级下册数学期末测试卷(原创题).docx
  • 人教版五年级下册数学期末测试卷(历年真题)word版.docx人教版五年级下册数学期末测试卷(历年真题)word版.docx
  • 人教版五年级下册数学期末测试卷(历年真题).docx人教版五年级下册数学期末测试卷(历年真题).docx
  • 人教版五年级下册数学期末测试卷(典型题)word版.docx人教版五年级下册数学期末测试卷(典型题)word版.docx
  • 人教版五年级下册数学期末测试卷(典型题).docx人教版五年级下册数学期末测试卷(典型题).docx
  • 人教版五年级下册数学期末测试卷(典优)word版.docx人教版五年级下册数学期末测试卷(典优)word版.docx
  • 人教版五年级下册数学期末测试卷(典优).docx人教版五年级下册数学期末测试卷(典优).docx
  • 人教版五年级下册数学期末测试卷(全国通用)word版.docx人教版五年级下册数学期末测试卷(全国通用)word版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1