2022-2023学年北师大版八年级数学上册第一章勾股定理综合训练练习题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 综合 训练 练习题
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D602、如
2、图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A13米B12米C5米D米3、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A5B9C16D254、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD5、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D306、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知
3、道()A以BC为边的正方形面积B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积7、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D138、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm29、如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D8010、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个
4、格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_尺.2、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_3、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯
5、,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长4、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为_5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则ADC的周长是_三、解答题(5小题,每小题10分,共计50分)1、阅读下面材料:小明遇到这样一个问题:MBN30,点A为射线BM上一点,且AB4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD当ACBN时,求BD的长小明发现:以AB为边在左侧作等边三角形ABE
6、,连接CE,能得到一对全等的三角形,再利用EBC90,从而将问题解决(如图1)请回答:(1)在图1中,小明得到的全等三角形是 ;BD的长为 (2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求ABD周长最小值2、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中ABAC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;(2)求原来的路线AC的长3、如图,
7、已知半径为5的M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分OAM,AOCO6(1)判断M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式4、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.5、算法统宗是中国古代数学名著,作者是我国明代数学家程大位在算法统宗中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记仕女佳人争蹴,终朝笑语欢嬉良工高士素好奇,算出索长有几”(注:1步5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10
8、尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长”-参考答案-一、单选题1、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形2、A【解析】【分析】根据题意,画出图形,构造直角三角
9、形,用勾股定理求解即可.【详解】如图所示,过D点作DEAB,垂足为E,AB=13,CD=8,又BE=CD,DE=BC,AE=ABBE=ABCD=138=5,在RtADE中,DE=BC=12, AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.【考点】考查勾股定理,画出示意图,数形结合是解题的关键.3、D【解析】【分析】设,根据勾股定理可得,即可求解【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键4、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,
10、PA=QC=3,BPA=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=150-QPC,和PC2QC,可得QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,
11、BPQ=60,APB=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=PA=3,PC2QC,PQC=90,QPC30,APC120所以C不正确,符合题意故选:C【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识5、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+FH+HC=6+8+10=24.故选C.6、D【解析】【分析】如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,证明
12、ADECAN得到,AE=CN同理可证BGHCBN,得到,BH=CN,则,即可推出由此即可得到答案【详解】解:如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,CNA=DEA=DAC=90,DAE+EDA=DAE+CAN=90,ADE=CAN,又AD=CA,ADECAN(AAS),AE=CN同理可证BGHCBN,BH=CN, ,只需要知道ABC的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形7、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13【详解】设B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
